Answer:
Explanation:
As given point p is equidistant from both the charges
It must be in the middle of both the charges
Assuming all 3 points lie on the same line
Electric Field due a charge q at a point ,distance r away
Where
- q is the charge
- r is the distance
- is the permittivity of medium
Let electric field due to charge q be F1 and -q be F2
I is the distance of P from q and also from charge -q
⇒
F1
F2
⇒
F1+F2=
To solve this problem it is necessary to apply the concepts related to Newton's second law, the definition of density and the geometric relationships that allow us to find the volume of the figures presented.
For the particular case of the Cube with equal sides its volume is determined by
In the case of perforated material we have that its volume is given according to the cylindrical geometry, that is to say
In this way the net volume would be
We need to find the mass, but we have the Weight and Gravity so from Newton's second Law
PART A) From the relation of density as a unit of mass and volume we have to
PART B) To find the weight of the cube then we apply the ratio of
The equations are analogous to that for linear movement:
acceleration = (final velocity - initial velocity) / time
acceleration = (3000 rpm - 0 rpm) / 2.0 s
a) acceleration = 1500 rpm/s or 25 rp(s^2)
For the displacement
displacement = initial velocity*time + 0.5*acceleration*time^2
displacement = (0)*(2 s) + (0.5)(25 rps^2)*(2 s)^2
b) displacement = 50 revolutions
Answer:
The mass of the copper is 3.00kg
Explanation:
Power = Net Force x velocity
Net force = driving force - force of resistance
Driving force = mass x acceleration
Acceleration = (final velocity - initial velocity) / time
Acceleration = (18 - 0) / 12 = 1.5 m/s²
Driving force = 1.5 x 10³ x 1.5
= 2250 N
Net force = 2250 - 400
= 1850
Power = 1850 x 18
= 3.33 x 10⁴ Watts