<h2>
Answer:</h2><h3><u>QUESTION①)</u></h3>
<em>✔ First step : calculate the kinetic energy that this car requires to reach 95 km/h</em>
95/ 3,6 ≈ 26,4 m/s
<em>Ec = ½ m x V² </em>
With Ec in J; m in kg; and V in m/s
- Ec = ½ 1750 x 26,4²
- Ec ≈ 610 000 J
<em>✔ Knowing that the car has a p power of 215,000 W, so :
</em>
T = E/P
- T = 610 000/215 000
- T ≈ 2.8 s
<h3>
The car takes 2.8 s to reach 95 km/h </h3>
<h3><u>QUESTION②)</u></h3>
N = 2,8/6,5 x 100 = 43.07
<h3>The car efficiency is 43 % </h3>
Answer: A raindrop
Explanation:
It would be a raindrop depending on if the ship is moving or not. If the ship is not moving, then the raindrop would have more momentum. But, if the ship were moving, then it would have more momentum. Because momentum equals mass times velocity.
If im not mistaken it is plasma
Answer:
a = 7.35 ft / s²
Explanation:
For this exercise we must use the kinematics relations
x = v₀ t + ½ a t²
as the runner leaves the starting line his initial velocity is zero
x = ½ a t²
a =
let's reduce the distance to foot
x = 60 yd (3ft / 1yd) = 180 ft
let's calculate
a = 2 180 / 7²
a = 7.35 ft / s²