Answer:
Energy is essentially work done by an object or on object.
From,
W = Fd
It's directly proportional to mass.
from,
K. E = 1/2mv²
Energy is directly proportional to mass.
P. E = mgh
Energy is directly proportional to mass.
H = mc∆T
Energy is directly proportional to mass.
Thus increasing mass will increase the energy also imparted on another object since all the above eqns show that relationship.
And for 2 moving bodies
K.Ei = K.Ef(energy conservation)
m1u²1 + m2u²2 = m1v²1 + m2v²2
The relationship is the same that the greater mass the greater the impact.
the answer is 1a as rearrange gives I = v divided by r
F(of spring)=230x=ma=3.5(5)=17.5=230x; x=0.07m.
Answer:
proportional to the current in the wire and inversely proportional to the distance from the wire.
Explanation:
The magnetic field produced by a long, straight current-carrying wire is given by:

where
is the vacuum permeability
I is the current intensity in the wire
r is the distance from the wire
From the formula, we notice that:
- The magnitude of the magnetic field is directly proportional to I, the current
- The magnitude of the magnetic field is inversely proportional to the distance from the wire, r
Therefore, correct option is
proportional to the current in the wire and inversely proportional to the distance from the wire.
Answer:
The instantaneous velocity is the specific rate of change of position (or displacement) with respect to time at a single point (x,t) , while average velocity is the average rate of change of position (or displacement) with respect to time over an interval.Average velocity : Average velocity of a body is defined as the change in position or displacement (Δx) divided by time interval (Δt) in which that displacement occurs.
Instantaneous velocity : The instantaneous velocity of a body is the velocity of the body at any instant of time or at any point of its path .
velocity can be positive , negative or zero.
By studying speed and velocity we come to the result that at any time interval average speed of an object is equal or more than the average but instantaneous speed is equal to instantaneous velocity.