The number of electrons emitted from the metal per second increases if the intensity of the incident light is increased.
Answer: Option B
<u>Explanation:</u>
As a result of photoelectric effect, electrons are emitted by the light incident on a metal surface. The emitted electrons count and its kinetic energy can measure as the function of light intensity and frequency. Like physicists, at the 20th century beginning, it should be expected that the light wave's energy (its intensity) will be transformed into the kinetic energy of emitted electrons.
In addition, the electrons count emitting from metal must vary with light wave frequency. This frequency relationship was expected because the electric field oscillates due to the light wave and the metal electrons react to different frequencies. In other words, the number of electrons emitted was expected to be frequency dependent and their kinetic energy should be dependent on the intensity (constant wavelength) of light.
Thus, the maximum in kinetic energy of electrons emitted increases with increase in light's frequency and is experimentally independent of light intensity. So, the number of emitted electrons is proportionate to the intensity of the incident light.
<span>Sound waves with frequency higher that 20,000 Hz are referred to as "Ultrasonic"
Hope this helps!</span>
Answer:
what are u asking there isnt a question
The answer would be, "1/560 seconds".
Answer:
The answer to your question is: F = 0.4375 N. The force will be 16 times lower than with the first conditions.
Explanation:
Data
F = 7 N
F = ? if the masses is quartered
Formula

Process
Normal conditions F = Km₁m₂/r² = 7
When masses quartered F = K(m₁/4)(m₂/4)/r² = ?
F = K(m₁m₂/16)/r²
F = K(m₁m₂/16r² = 7/16 = 0.4375 N