Answer:
1/8 or 0.125
Step-by-step explanation:
Let x be the length of the sides of the square ABCD.
Therefore, the length of CN and CM is x/2.
The area of the triangle MCN is:
![A_t = \frac{0.5x*0.5x}{2}=\frac{x^2}{8}](https://tex.z-dn.net/?f=A_t%20%3D%20%5Cfrac%7B0.5x%2A0.5x%7D%7B2%7D%3D%5Cfrac%7Bx%5E2%7D%7B8%7D)
The area of the square ABCD is:
![A_s =x*x =x^2](https://tex.z-dn.net/?f=A_s%20%3Dx%2Ax%20%3Dx%5E2)
Thus, the probability that a random point lies in the triangle MCN is:
![P=\frac{A_t}{A_s}=\frac{\frac{x^2}{8}}{x^2}=\frac{1}{8}=0.125](https://tex.z-dn.net/?f=P%3D%5Cfrac%7BA_t%7D%7BA_s%7D%3D%5Cfrac%7B%5Cfrac%7Bx%5E2%7D%7B8%7D%7D%7Bx%5E2%7D%3D%5Cfrac%7B1%7D%7B8%7D%3D0.125)
The probability that the point will lie in the triangle MCN is 1/8 or 0.125.