Answer:
x-5 => 1
x => 6
Plot a solid, closed dot, at x =6 and point an arrow going towards the right.
The answer is infinite solutions.
subtract 50 from each side to get
23y+27y=50y
ad 23y and 27y to get 50y
50y=50y
and no matter what number you put in place you get the correct answer
Answer:
x = ![\frac{7+\sqrt{47}\times i }{4}](https://tex.z-dn.net/?f=%5Cfrac%7B7%2B%5Csqrt%7B47%7D%5Ctimes%20i%20%7D%7B4%7D)
Step-by-step explanation:
<u>To solve quadratic systems,we always substitute one variable in terms if the other and then solve the equation.</u>
x + 2y = 6 ---------------(1)
y - 5 =
---------------(2)
y =
+ 5 ---------------(3)
Substitute (3) in (1) ,
x + 2(
+ 5 ) = 6
=![a^{2} + 2ab + b^{2}](https://tex.z-dn.net/?f=a%5E%7B2%7D%20%2B%202ab%20%2B%20b%5E%7B2%7D)
x + 2(
+ 5 ) = 6
--------------(4)
The roots of the quadratic equation
is
x =
-----------(5)
According to equation (5),solution of (4) is
x = ![\frac{7 + \sqrt{(-7)^{2}-4 \times 24 } }{2 \times 2}](https://tex.z-dn.net/?f=%5Cfrac%7B7%20%2B%20%5Csqrt%7B%28-7%29%5E%7B2%7D-4%20%5Ctimes%2024%20%7D%20%20%7D%7B2%20%5Ctimes%202%7D)
x = ![\frac{7+\sqrt{49-96}}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B7%2B%5Csqrt%7B49-96%7D%7D%7B4%7D)
x = ![\frac{7+\sqrt{47}\times i }{4}](https://tex.z-dn.net/?f=%5Cfrac%7B7%2B%5Csqrt%7B47%7D%5Ctimes%20i%20%7D%7B4%7D)
1) Solving in terms of h
V = lwh <em>Divide both sides by h</em>
<em />
![\begin{gathered} V\text{ = lwh} \\ \frac{V}{h}=\frac{lwh}{h} \\ \frac{V}{h}\text{ =}lw\text{ Cross multiply} \\ hlw=V\text{ Divide both sides by lw} \\ \frac{hlw}{lw}=\text{ }\frac{V}{lw} \\ h\text{ = }\frac{V}{lw} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20V%5Ctext%7B%20%3D%20lwh%7D%20%5C%5C%20%5Cfrac%7BV%7D%7Bh%7D%3D%5Cfrac%7Blwh%7D%7Bh%7D%20%5C%5C%20%5Cfrac%7BV%7D%7Bh%7D%5Ctext%7B%20%3D%7Dlw%5Ctext%7B%20Cross%20multiply%7D%20%5C%5C%20hlw%3DV%5Ctext%7B%20Divide%20both%20sides%20by%20lw%7D%20%5C%5C%20%5Cfrac%7Bhlw%7D%7Blw%7D%3D%5Ctext%7B%20%7D%5Cfrac%7BV%7D%7Blw%7D%20%5C%5C%20h%5Ctext%7B%20%3D%20%7D%5Cfrac%7BV%7D%7Blw%7D%20%5Cend%7Bgathered%7D)
So rearranging that equation we can find h, in terms of V, and l and w.
If we want to solve in terms of l, or w, we'll proceed similarly to isolate the variable we want on the left side, and the other terms on the right side.