From the de Moivre's we have,
<span>
(cosθ+isinθ)^n=cos(nθ)+isin(nθ)
</span><span>
Therefore,
</span><span>
R((cosθ+isinθ)^5)=cos(5θ)I((cosθ+isinθ)^5)=sin(5θ)
</span><span>
Simplifying,
</span><span>
cos^5(θ)−10(sin^2(θ))(cos^3(θ))+5(sin^4(θ))(cosθ)=cos(5θ) </span><span>
</span>
3,6,8,5, these are your answers
Answer:
6 < 2n = 4
Step-by-step explanation:
ig