1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spayn [35]
3 years ago
13

PLEASE HELP...

Mathematics
1 answer:
Katena32 [7]3 years ago
8 0

Answer:

26.2655 miles

Step-by-step explanation:

Whenever possible, draw a diagram.  I've attached a picture of the balloon and the lines of depression (not drawn to scale, of course).

As you can see, the angles of depression form alternate interior angles with the ground (angles of elevation).  So these angles are also 13° and 39°.

We can use the tangents of these angles to find the base lengths of the two triangles that are formed.

tan 13° = 4 / a

a = 4 / tan 13°

tan 39° = 4 / b

b = 4 / tan 39°

So the total distance is:

a + b

= 4 / tan 13° + 4 / tan 39°

≈ 22.2655

You might be interested in
Find the volume of the figure if length = 1/2 m, width = 1/2 m and height = 6 meters. I WILL GIVE BRAINLIEST PLLZZZ SOMEONE HELP
goldfiish [28.3K]

Step-by-step explanation:

Volume of figure=length×width×height

=(1/2)×(1/2)×6

=0.5×3

=1.5m³

PLEASE GIVE BRAINLIEST

5 0
3 years ago
C. Read and analyze the problem, then solve.
Sliva [168]

Given parameters:

Total length of curtains bought = 20m

She used 8m for the living room

She used 7m for the dining room

unknown:

Quantity used for the kitchen = ?

Solution:

Quantity used for the kitchen = Total length - (living room + dining room)

Input the parameters given solve;

   Quantity used for the kitchen = 20 - (8 + 7) = 5m

The length of curtain used for the kitchen is 5m

5 0
3 years ago
A university with a high water bill is interested in estimating the mean amount of time that students spend in the shower each d
yuradex [85]

Answer:

a) lower limit = 4.295 minutes

b) upper limit = 6.365 minutes

Step-by-step explanation:

Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.

The confidence interval of a statistical data can be written as.

x+/-zr/√n

Given that;

Mean x = 5.33 minutes

Standard deviation r = 1.33 minutes

Number of samples n = 11

Confidence interval = 99%

z(at 99% confidence) = 2.58

Substituting the values we have;

5.33+/-2.58(1.33/√11)

5.33+/-2.58(0.401010088288)

5.33+/-1.0346060277

5.33+/-1.035

= ( 4.295, 6.365) minutes

Therefore at 99% confidence interval (lower, upper limit) = ( 4.295, 6.365) minutes

a) lower limit = 4.295 minutes

b) upper limit = 6.365 minutes

3 0
3 years ago
If I get 10 dollars a week how much money will I have saved up in 9-years I WILL GIVE 55 POINTS
r-ruslan [8.4K]

Answer:

<u>$4,680</u>

Step-by-step explanation:

<u>Rate</u> : 10 dollars a week

  • Per year : 10 x 52 = $520
  • 9 x 520 = $4,680

You will have saved up <u>$4,680</u> in 9 years.

4 0
2 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • What is 456,420 divided by 8.75 million
    6·1 answer
  • Given f(x)=x - 1/x and g(X)+ 1/x. what is f(g(1/2))?
    5·1 answer
  • In nuclear fusion, about 0.60% of the mass of the fusing substances is converted to energy. What mass in grams is converted into
    14·1 answer
  • PLEASE PLEASE PLEASE HELP ME​
    10·1 answer
  • Could someone please help me with this? We are meant to use Pythagoras theorem to solve to solve this question
    5·2 answers
  • Please Help Me With This.
    7·1 answer
  • Two cars are heading toward the same intersection. Car A travels due east at 20 miles per hour, and Car B travels due north at 5
    14·1 answer
  • Help I will give brainiest if you can atleast do three​
    9·2 answers
  • Subtract 8-5/7 Leave your answer in simplest terms.
    10·2 answers
  • 5<br> 0 = - in<br> =<br> in quadrant II<br> Given cos =<br> Find sin<br> 3
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!