Answer:
The volume of foam needed to fill the box is approximately 2926.1 cubic inches.
Step-by-step explanation:
To calculate the amount of foaming that is needed to fill the rest of the box we first need to calculate the volume of the box and the volume of the ball. Since the box is cubic it's volume is given by the formula below, while the formula for the basketball, a sphere, is also shown.
Vcube = a³
Vsphere = (4*pi*r³)/3
Where a is the side of the box and r is the radius of the box. The radius is half of the diameter. Applying the data from the problem to the expressions, we have:
Vcube = 15³ = 3375 cubic inches
Vsphere = (4*pi*(9.5/2)³)/3 = 448.921
The volume of foam there is needed to complete the box is the subtraction between the two volumes above:
Vfoam = Vcube - Vsphere = 3375 - 448.921 = 2926.079 cubic inches
The volume of foam needed to fill the box is approximately 2926.1 cubic inches.
Answer:
The solutions
are
and the x-intercepts of
are 
Step-by-step explanation:
Finding the solutions to
means finding the roots, a root is where the function is equal to zero.
The x-intercept is the point at which the graph crosses the x-axis. At this point, the y-coordinate is zero.
To find the roots you need to:
Rewrite the equation with
and 

Solve by factoring






Using the Zero factor Theorem: if ab = 0 then a = 0 or b = 0 (or both a = 0 and b = 0)
The solutions to the quadratic equation are:

Substitute back
, solve for x

Apply the difference of squares formula


Using the Zero factor Theorem: if ab = 0 then a = 0 or b = 0 (or both a = 0 and b = 0)
The solutions are:

Because two of the solutions are complex roots the only x-intercepts are 
lions = x
monkeys = 3x ( 3 times as many )
3x +x = 24
4x = 24
x = 24/4
x = 6
6 lions
6*3 = 18 monkeys
Here is your answer
D.
π 
REASON:
Formula for volume of sphere
= 4/3×π× r^3
Here, r= 13
So,
volume=4/3×π× 13^3
= 4/3×π× 2197
= 8788/3 ×π
HOPE IT IS USEFUL
Answer:
4
Step-by-step explanation:
We are told that figure B is a scaled copy of B, which means figure A was enlarged by a certain scale factor to get a similar figure as A, now referred to as figure B.
The scale factor = ratio of any two corresponding sides of both similar figures.
Thus,
Scale factor of the similar figures given = 40/10 = 4.
This means that, figure A was scaled up by 4 times its original size to get figure B. Each side of figure B is 4 × the corresponding side in figure A.
Scale factor = 4