Answer:
1.000153 T
Explanation:
The energy change ΔE = hc(1/λb - 1/λa)
= 6.626069 ✕ 10⁻³⁴ J · s 2.997925 × 10⁸ m/s(1/6.544750 × 10⁻⁷ m - 1/6.544550 × 10⁻⁷ m)
= 19.864457907 × 10⁻²⁶(1527942.2438 - 1527988.9374) = 19.864457907 × 10⁻²⁶(-46.6936)
= 927.543052 × 10⁻²⁶
= -9.275431× 10⁻²⁴ J.
This energy change ΔE = 2μBB. So the magnetic field, B is
B = ΔE/2μB where μB = 9.274009 ✕ 10⁻²⁴ J/T
B = -9.275431× 10⁻²⁴ J/9.274009 ✕ 10⁻²⁴ J/T = -1.000153 T
The magnitude of the magnetic field B = 1.000153 T
Answer:
The Anatomy of a Lens
Refraction by Lenses
Image Formation Revisited
Converging Lenses - Ray Diagrams
Converging Lenses - Object-Image Relations
Diverging Lenses - Ray Diagrams
Diverging Lenses - Object-Image Relations
The Mathematics of Lenses
Ray diagrams can be used to determine the image location, size, orientation and type of image formed of objects when placed at a given location in front of a lens. The use of these diagrams was demonstrated earlier in Lesson 5 for both converging and diverging lenses. Ray diagrams provide useful information about object-image relationships, yet fail to provide the information in a quantitative form. While a ray diagram may help one determine the approximate location and size of the image, it will not provide numerical information about image distance and image size. To obtain this type of numerical information, it is necessary to use the Lens Equation and the Magnification Equation. The lens equation expresses the quantitative relationship between the object distance (do), the image distance (di), and the focal length (f)
A) Pulley and Hook
B) bridge
C) Wheel and axle
Answer:
time for maximum energy is 1.718 sec
Explanation:
Maximum energy on the capacitor is given as 
Maximum energy 
The maximum charge is given by

Or
Or
solving for t

Putting all value to get desired value

