Answer:
A) if each astronaut breathes about 500 cm³, the total volume of air breathed in a year is 14716.8m³.
B) The Diameter of this spherical space station should be 30.4m
Explanation:
The breathing frequency (according to Rochester encyclopedia) is about 12-16 breath per minute. if we take the mean value (14 breath per minute), we can estimate the total breaths of a person along a year:

If we multiply this for the number of people in the station and the volume each breath needs, we obtain the volume breathed in a year.
The volume of a sphere is:

So the diameter is:
![D=2r=2\sqrt[3]{\frac{3V_{sph}}{4\pi}} =30.4m](https://tex.z-dn.net/?f=D%3D2r%3D2%5Csqrt%5B3%5D%7B%5Cfrac%7B3V_%7Bsph%7D%7D%7B4%5Cpi%7D%7D%20%3D30.4m)
Hi there!
We can use Newton's Second Law:

ΣF = Net force (N)
m = mass (kg)
a = acceleration (m/s²)
We can rearrange the equation to solve for the acceleration.

Answer:
High tides would be much smaller than they are now, and low tides would be even lower. This is because the sun would be influencing the tides, not the moon; however, the sun has a weaker pull, which would decrease the tides. ... Winds could become much faster and much stronger without the moon.
Explanation:
google
Answer:
A damped oscillation means an oscillation that fades away with time while Forced oscillations occur when an oscillating system is driven by a periodic force that is external to the oscillating system.
Explanation:
Damping is the reduction in amplitude (energy loss from the system) due to overcomings of external forces like friction or air resistance and other resistive forces. ... When a body oscillates by being influenced by an external periodic force, it is called forced oscillation.
<h2>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>helped</u></em><em><u> </u></em></h2>
<em><u>Welcome</u></em><em><u> </u></em>
Answer:
honestly i dont like physics class but for you im gonna write somethin' good but for me tho its B O R I N G
Explanation:
<em>Physics is the branch of science that deals with the structure of matter and how the fundamental constituents of the universe interact. It studies objects ranging from the very small using quantum mechanics to the entire universe using general relativity.</em>