Answer:
2.35 *10^2 g
Explanation:
4.2 mol Fe *55.845 g/1 mol = 234.549 > 2.35 *10^2 g
Answer : The enthalpy change for the solution is 166.34 kJ/mol
Explanation :
First we have to calculate the enthalpy change of the reaction.
Formula used :

where,
= change in enthalpy = ?
C = heat capacity of water = 
m = total mass of sample = 2.174 + 127.4 = 129.6 g
= initial temperature = 
= final temperature = 
Now put all the given values in the above expression, we get:


Now we have to calculate the moles of AX added to water.

Now we have to calculate the enthalpy change for the solution.
As, 0.04592 moles releases heat = 7638.36 J
So, 1 moles releases heat = 
Therefore, the enthalpy change for the solution is 166.34 kJ/mol
Answer:
In fluorine, the electrons are tightly held to the nuclei. The electrons have little chance to wander to one side of the molecule, so the London dispersion forces are relatively weak. At a low enough temperature the molecules will all be solids. At a high enough temperature they will all be gases.
Answer:
1.44mole of CO
Explanation:
The reaction equation is given as:
5C + 2SO₂ → CS₂ + 4CO
We check to see if the expression is balanced and it is so;
Now;
Given;
1.8mole of C reacted; how many moles of CO are produced;
From the balanced reaction equation:
5 mole of C is expected to produce 4 mole of CO
1.8 mole of C will then produce
= 1.44mole of CO
Density= 1.2092 because density = mass/volume