Answer: They usually have certain special functions.
Explanation:
Think of the functions of different types of human cells. Red blood cells to transport oxygen, nerve cells to send messages, etc.
<span>scientific consensus changed as scientists learned more about organisms. I think thats the answer.
</span>
Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms.[2] In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In ruminants, this tends to be a continuous process.[3] In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly endergonic until it is coupled to the hydrolysis of ATP or GTP, effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type
Answer:
c. Proteins and lipids are made on the ER membrane and put in vesicles.
a. Vesicles containing proteins and lipids fuse with the Golgi bodies.
d. The Golgi bodies tag the molecules to signal their ultimate delivery.
b. Vesicles pinched off from the cristernae carry the molecule to its location.
Explanation:
Proteins are made by the ribosome machinery of the rough endoplasmic reticulum. The proteins made need to be packaged before they are sent outside the cell to their location. If the proteins are not packaged and tagged, then they will be degraded by different enzymes present in the cell. So, the packaging of the proteins is done by the Golgi-complex. After packaging is done and tags are added to the proteins, the proteins move to the outside of the cell in vesicles.