The differences in the properties of diamond and graphite is as a result of how their particles are arranged in space. This space arrangement leads to distinct crystal structures for the two compounds. In diamond, the carbon atoms are arranged in tetrahedral shape while in graphite the carbon atoms arrayed in planes.
Hope this helps :)
Answer:
Explanation:
This is a direct application of the equation for ideal gases.
Where:
- P = pressure = 1.25 atm
- V = volume = 25.2 liter
- R = Universal constant of gases = 0.08206 atm-liter/K-mol
- T = absolute temperature = 25.0ºC = 25 + 273.15 K = 298.15 K
- n = number of moles
Solving for n:
Substituting:

1 elements
2 they have same number of valence electrons
3 period
Answer: The metal that has a greater reactivity is more easily oxidized.
Explanation:
Oxidation is when the elements lose electrons and increase their oxidation state.
The metals tend to react by losing electrons and form the corresponding cation.
For expample, sodium (an alkalyne metal) loses one elecron and form the cation Na¹⁺ , then this cation combine with an anion and form compounds like NaCl, NaOH. The same do the other alkalyne metals.
Magnesium (an alkalyne earth metal) loses two electrons and form the cation Mg²⁺, then it combines with some anions to form compounds, like MgSO₄, Mg(OH)₂.
So, the easier the metal gets oxidized the greater its reactivity.
Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.