The Average atomic weight of X is 28.7amu
Isotopes are atoms with the same number of protons but differing numbers of neutrons.
Different isotopes have various atomic masses.
The proportion of atoms with a particular atomic mass that can be found in a naturally occurring sample of an element is known as the relative abundance of an isotope.
An element's average atomic mass is computed as a weighted average by multiplying the relative abundances of its isotopes by their respective atomic masses, then adding the resulting products.
Using mass spectrometry, it is possible to determine the relative abundance of each isotope.
The atomic weight of the element will be a weighted average of the isotopes based on the relative abundance:
(27.730 x 0.6058) + (28.841 x 0.1835) + (31.321 x 0.2107) = 16.7988 + 5.2923+ 6.599 = 28.690 = 28.7 amu.
Average atomic weight of X is 28.7amu
Learn more about Average Atomic Weight here
brainly.com/question/6200158
#SPJ4
Question 9. The first one is the smallest. Anything with a negative exponent is going to be less than 1, the .00000241. The exponent tells you the number of zeroes to the right of the decimal point. Farther to right gets smaller and smaller.
Question 10. The last one is true. If the last digit is smaller than 5, drop the digit, and do not change. (If it is a 5 or larger, the digit before it would round up)
Answer:

Explanation:
Hello!
In this case, since the standard enthalpy change for a chemical reaction is stood for the enthalpy of reaction, for the given reaction:

We set up the enthalpy of reaction considering the enthalpy of formation of each species in the reaction at the specified phase and the stoichiometric coefficient:

In such a way, by using the NIST database, we find that:

Thus, we plug in the enthalpies of formation to obtain:

Best regards!
A have no potential energy
Answer:
30.83 M
Explanation:
17.03052 re in one mole. So, if you multiply it by 30.83, you will get 535 g of ammonia.
In fact, the detailed answer is 30.827009392549122.