C=2πr
The C stands for circumference
the π is Pi (3.14)
and r is the radius (length of half a circle)
Since the sides are 10 ft you multiply that by 2 to get the length of both sides which gives you 20 feet.
Then to find the circle, since both are half circles. You can just do the normal circumference equation and you will end up with the same answer.
For example in this problem: this problem gives you the diameter but you need the radius of the circle. C=2(π)(1.5)
C=9.42 < this is the circumference of the circle.
Then you add the sides of the table which are 20 feet.
So the final answer is 29.42 feet.
Answer:
31.5 units^2
Step-by-step explanation:
Rectangle area (RA) = l × w
Triangle area (TA) = (bh)/2
RA = 3 × 7
RA = 21
TA = (7 × 3)/2
TA = 21/2
TA = 10.5
(Triangles are congruent as shown by the lines on each side of the triangle so I can calculate area of both of them together as I just did)
Add areas together
21 + 10.5 = 31.5
Answer:
0.062
Step-by-step explanation:
The numbers will decrease by 0.001 as you move the the left, so the list of numbers can be found as ...
3rd number: 0.064
2nd number: 0.064 -0.001 = 0.063
1st number: 0.063 -0.001 = 0.062
Answer:
It was 4 years.
Step-by-step explanation:
To solve this problem we need to use the appropriate formula for simple interest, which is shown below:
M = C*r*t
Where M is the amount of interest, C is the initial amount of money, r is the rate of interest and t is the time elapsed in years. Applying the data from the problem we have:
840 =7000*0.03*t
840 = 210*t
210*t = 840
t = 840/210
t = 4
It was 4 years.
Answer:
The solution to this question can be defined as follows:
Step-by-step explanation:
Please find the complete question in the attached file.
![A = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%5Cend%7Barray%7D%5Cright%5D)
now for given values:
![\left[\begin{array}{ccc} \frac{3}{4} - \lambda & \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2} - \lambda & 0\\ -\frac{1}{4}& -\frac{1}{4} & 0 -\lambda \end{array}\right]=0 \\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%20-%5Clambda%20%5Cend%7Barray%7D%5Cright%5D%3D0%20%5C%5C%5C%5C)
![\to (\frac{3}{4} - \lambda ) [-\lambda (\frac{1}{2} - \lambda ) -0] - 0 - \frac{1}{4}[0- \frac{1}{2} (\frac{1}{2} - \lambda )] =0 \\\\\to (\frac{3}{4} - \lambda ) [(\frac{\lambda}{2} + \lambda^2 )] - \frac{1}{4}[\frac{\lambda}{2} - \frac{1}{4}] =0 \\\\\to (\frac{3}{8}\lambda + \frac{3}{4} \lambda^2 - \frac{\lambda^2}{2} - \lambda^3 - \frac{\lambda}{8} + \frac{1}{16}=0 \\\\\to (\lambda - \frac{1}{2}) (\lambda -\frac{1}{4}) (\lambda - \frac{1}{2}) =0\\\\](https://tex.z-dn.net/?f=%5Cto%20%20%28%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%29%20%5B-%5Clambda%20%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%29%20-0%5D%20-%200%20-%20%5Cfrac%7B1%7D%7B4%7D%5B0-%20%5Cfrac%7B1%7D%7B2%7D%20%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%29%5D%20%3D0%20%5C%5C%5C%5C%5Cto%20%20%28%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%29%20%5B%28%5Cfrac%7B%5Clambda%7D%7B2%7D%20%2B%20%5Clambda%5E2%20%29%5D%20-%20%5Cfrac%7B1%7D%7B4%7D%5B%5Cfrac%7B%5Clambda%7D%7B2%7D%20-%20%20%5Cfrac%7B1%7D%7B4%7D%5D%20%3D0%20%5C%5C%5C%5C%5Cto%20%20%28%5Cfrac%7B3%7D%7B8%7D%5Clambda%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Clambda%5E2%20-%20%5Cfrac%7B%5Clambda%5E2%7D%7B2%7D%20-%20%5Clambda%5E3%20-%20%5Cfrac%7B%5Clambda%7D%7B8%7D%20%2B%20%5Cfrac%7B1%7D%7B16%7D%3D0%20%5C%5C%5C%5C%5Cto%20%28%5Clambda%20-%20%5Cfrac%7B1%7D%7B2%7D%29%20%28%5Clambda%20-%5Cfrac%7B1%7D%7B4%7D%29%20%28%5Clambda%20-%20%5Cfrac%7B1%7D%7B2%7D%29%20%3D0%5C%5C%5C%5C)


In point b:
Its
spectral radius is less than 1 hence matrix is convergent.
In point c:
![\to c^{(k+1)} = A x^{k}+C \\\\\to x(0) = \left(\begin{array}{c}3&1&2\end{array}\right) , c = \left(\begin{array}{c}2&2&4\end{array}\right)\\\\ \to x^{(k+1)} = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right] x^k + \left[\begin{array}{c}2&2&4\end{array}\right] \\\\](https://tex.z-dn.net/?f=%5Cto%20c%5E%7B%28k%2B1%29%7D%20%3D%20A%20x%5E%7Bk%7D%2BC%20%5C%5C%5C%5C%5Cto%20x%280%29%20%3D%20%20%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D3%261%262%5Cend%7Barray%7D%5Cright%29%20%20%2C%20c%20%3D%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D2%262%264%5Cend%7Barray%7D%5Cright%29%5C%5C%5C%5C%20%20%5Cto%20x%5E%7B%28k%2B1%29%7D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%5Cend%7Barray%7D%5Cright%5D%20x%5Ek%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%262%264%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%5C%5C)
after solving the value the answer is
:
![\lim_{k \to \infty} x^k=o = \left[\begin{array}{c}0&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Clim_%7Bk%20%5Cto%20%5Cinfty%7D%20x%5Ek%3Do%20%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%260%260%5Cend%7Barray%7D%5Cright%5D)