D subtract the atomic number from the atomic mass
N = A - Z
<span> Lava </span>erupts<span> on the </span>sea floor<span> also the type of rock that cools quickly is Magma and are finer grained and glassy.
Hope this helps</span>
Answer:
B. Attract each other with a force of 10 newtons.
Explanation:
Statement is incorrectly written. <em>The correct form is: A </em>
<em> charge and a </em>
<em> at a distance of 0.3 meters. </em>
The two particles have charges opposite to each other, so they attract each other due to electrostatic force, described by Coulomb's Law, whose formula is described below:
(1)
Where:
- Electrostatic force, in newtons.
- Electrostatic constant, in newton-square meters per square coulomb.
- Magnitudes of electric charges, in coulombs.
- Distance between charges, in meters.
If we know that
,
and
, then the magnitude of the electrostatic force is:


In consequence, correct answer is B.
Answer:
Explanation:
a )
Each blade is in the form of rod with axis near one end of the rod
Moment of inertia of one blade
= 1/3 x m l²
where m is mass of the blade
l is length of each blade.
Total moment of moment of 3 blades
= 3 x
x m l²
ml²
2 )
Given
m = 5500 kg
l = 45 m
Putting these values we get
moment of inertia of one blade
= 1/3 x 5500 x 45 x 45
= 37.125 x 10⁵ kg.m²
Moment of inertia of 3 blades
= 3 x 37.125 x 10⁵ kg.m²
= 111 .375 x 10⁵ kg.m²
c )
Angular momentum
= I x ω
I is moment of inertia of turbine
ω is angular velocity
ω = 2π f
f is frequency of rotation of blade
d )
I = 111 .375 x 10⁵ kg.m² ( Calculated )
f = 11 rpm ( revolution per minute )
= 11 / 60 revolution per second
ω = 2π f
= 2π x 11 / 60 rad / s
Angular momentum
= I x ω
111 .375 x 10⁵ kg.m² x 2π x 11 / 60 rad / s
= 128.23 x 10⁵ kgm² s⁻¹ .