Answer:
a. 7.62cm
b. Real and inverted
c. 2.76 cm
d. 3450
Explanation:
We proceed as follows;
a. the lens equation that relates the object distance to the image distance with the focal length is given as follows;
1/f = 1/p + 1/q
making q the subject of the formula;
q = pf/p-f
From the question;
p = 4.70m
f = 7.5cm = 0.075m
Substituting these, we have ;
q = (4.7)(0.075)/(4.7-0.075) = 0.3525/4.625 = 0.0762 = 7.62 cm
b. The image is real and inverted since the image distance is positive
c. We want to calculate how tall the image is
Mathematically;
h1 = (q/p)h0
h1 = (7.62/4.70)* 1.7
h1 = 2.76 cm
d. We want to calculate the number of pixels that fit into this image
Mathematically:
n = h1/8 micro meter
n = 2.76cm/8 micro meter = 2.76 * 10^-2/8 * 10^-6 = 3450
Answer:
Work = power * time
time = 20000 joules / 1000 joules / sec = 20 sec
The correct answer to the question is : D) 352.6 m/s.
CALCULATION :
As per the question, the temperature is increased from 30 degree celsius to 36 degree celsius.
We are asked to calculate the velocity of sound at 36 degree celsius.
Velocity of sound is dependent on temperature. More is the temperature, more is velocity of sound.
The velocity at this temperature is calculated as -
V = 331 + 0.6T m/s
= 331 + 0.6 × 36 m/s
= 331 + 21.6 m/s
= 352.6 m/s.
Here, T denotes the temperature of the surrounding.
Hence, velocity of the sound will be 352.6 m/s.