Given there are three blocks of masses , and (ref image in attachment)
When all three masses move together at an acceleration a, the force F is given by
F = ( + + ) *a ................(equation 1)
Also it is given that does not move with respect to , which gives tension T is exerted on pulley by only, Hence tension T is
T = *a ..........(equation 2)
There is also also tension exerted by . There are two components here: horizontal due to acceleration a and vertical component due to gravity g. Thus tension is given by
T = ................(equation 3)
From equation 2 and 3, we get
*a =
Squaring both sides we get
* = * (+)
* = ( * )+ ( *)
( - ) * = *
= */( - )
Taking square root on both sides, we get acceleration a
a = *g/()
Hence substituting the value of a in equation 1, we get
The phenomenon that is occurring is depicted in fig. Induction can be used to provide an explanation for this. As seen in Fig., when a negatively charged plastic rod is pushed close to a metal rod that is initially unaltered, the metal rod's left end picks up positive charges while the right end will pick up negative charges as a result of induction. when the empty metal ball is brought close to the metal rod's right end. The ball's near face subsequently develops a positive charge as a result of induction, and this positive charge attracts the rod since opposite charges are attracted to one another.
<h3>Define Induction?</h3>
Electromagnetic induction, often known as induction, is the technique of creating electrical current in a conductor by exposing the conductor to a fluctuating magnetic field. Because the magnetic field is thought to have induced the current in the conductor, it is known as induction.
The spacing between two energy levels in an atom shows the energy difference between them. Clearly, B has a greater value of ∆E compared to A. This implies that the wavelength emitted by B is greater than A while B will emit fewer, more energetic photons.
When atoms jump from lower to higher energy levels, photons are absorbed. The kinetic energy of the incident photon determines the frequency, wavelength and colour of light emitted by the atom.
The energy level to which an atom is excited is determined by the kinetic energy of the incident electron. As the voltage increases, the kinetic energy of the electron increases, the further the atom is from the source of free electrons, the greater the required kinetic energy of free electron. When electrons are excited to higher energy levels, they must return to ground state.