Answer:
if you look it up i think u can find it it could be a mealltiod Co 27
Explanation:
Anton Von Leeuwenhoek, in the early 1600s, saw these tiny microbes and called them "animalcules" and "wee beasties".
This can be solve using the formula P = I^2 * Rwhere P is the powerI is the CurrentR is the resistanceP = I^2 * R
1/4 Watt = I^2 * 100 ohm solve for II^2 = 1/400 I = 0.05 amps then using the formula to solve for the voltage:V = I * RV = 0.05 amps * 100 ohms V = 5 volts
Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂=
= 6.57 m/s
Answer : B) The cow pulls back on the girl.
From newton’s third law we know that every action has a reaction force pushing back. So when the girl pulls on a cow, the cow is pulling back on her.