The Energy flux from Star B is 16 times of the energy flux from Star A.
We have Two stars - A and B with 4900 k and 9900 k surface temperatures.
We have to determine how many times larger is the energy flux from Star B compared to the energy flux from Star A.
<h3>State Stephen's Law?</h3>
Stephens law states that if E is the energy radiated away from the star in the form of electromagnetic radiation, T is the surface temperature of the star, and σ is a constant known as the Stephan-Boltzmann constant then-

Now -
Energy emitted per unit surface area of Star is called Energy flux. Let us denote it by E. Then -

Now -
For Star A →
= 4900 K
For Star B →
= 9900 K
Therefore -

2.02 = 2 (Approx.)
Now -
Assume that the energy flux of Star A is E(A) and that of Star B is E(B). Then -

E(B) = E(A) x 
E(B) = E(A) x 
E(B) = 16 E(A)
Hence, the Energy flux from Star B is 16 times of the energy flux from Star A.
To learn more about Stars, visit the link below-
brainly.com/question/13451162
#SPJ4
Answer:41.991ml
Explanation:
Equations: 2 H2O → 4H+ + 4e + O2 OXIDATION
2 H+ + 2e → H2 REDUCTION
Electrolysis is the chemical decomposition of compounds when electricity is made to pass through a molten compound or solution.
from the oxidation reaction:
1moles of oxygen requires 4moles of electrons to be discharged at the product
F=96500C/mol
Quantity of charge Q=It
=60*60*0.201A
Q=723.6C
Mole=Q/(F*mole ratio of electron)
Mole= 723.6/(4*96500)
Mole=((1809)/(965000))
M=0.0018746114
M1/M2=V1/V2
1/0.00187=22.4dm^3/V2
V2=22.4*0.00187
V2=0.04199129534dm^3
41.99129534ml
Jackson sells lemonade for $2 per cup. he paid $20 for supplies to sell 5 cups. What is the domain for this scenario
-- Most of the southern part of the state is considered to have
no risk of damage.
-- Most of the upper part of the state is considered to be at risk
for only minor damage.
-- A tiny part of the state, in the 'Big Bend' region in the west, is
considered to be at risk for moderate damage.
Answer:
due to tension force acting against gravitational pull
Explanation:
hope this somewhat helps :)