Answer:
Mass has total mechanical energy, which is the sum of kinetic and potential energy. as the mass is dropping, potential energy is converted into kinetic energy so mechanical energy is preserved If there is no friction. If there is friction, some of the mechanical energy is lost as heat energy so it changes.
Explanation:
Which data set has the largest range? A. 55, 57, 59, 60, 61, 49, 48 B. 21, 25, 14, 16, 29, 22, 20 C. 12, 15, 16, 19, 18, 15, 27
Simora [160]
Data D has the largest range.
Data A: 61-48=13
Data B: 29-14=15
Data C:27-12=15
Data D:54-31=23
Therefore, Data D has the largest range.
Answer:
The system loses 90 kJ of heat
Explanation:
We can answer the question by using the 1st law of thermodynamics, which states that:

where
is the change in internal energy of the system
is the heat absorbed by the system (positive if absorbed, negative if released by the system)
is the work done by the system (positive if done by the system, negative if done by the surrounding on the system)
In this problem, we have:
is the work done (negative, because it is done by the surrounding on the system)
is the increase in internal energy
Using the equation above, we can find Q, the heat absorbed/released by the system:

And the negative sign means that the system has lost this heat.
Answer:
The current will be increased and also for the resistance.
Explanation:
The analysis of a direct current circuit can give us the explanation we need. Using the ohm law, which tells us that the voltage is equal to the product of the current by the resistance we have:
![V=I*R\\where\\V= voltage [V]\\I= amperes [amp]\\R=resistance [ohm]\\](https://tex.z-dn.net/?f=V%3DI%2AR%5C%5Cwhere%5C%5CV%3D%20voltage%20%5BV%5D%5C%5CI%3D%20amperes%20%5Bamp%5D%5C%5CR%3Dresistance%20%5Bohm%5D%5C%5C)
The voltage is equal to the potential difference therefore we will have these expressions:

If we increase the potential differential or circuit voltage, the current will also increase and so does the resistance by increasing the voltage. If we put numerical values in the equation given before, we can confirm this fact.