Answer:
Your blocking people that need help
Step-by-step explanation:
Don’t add posts like these as others who need help will have to go through these first
Answer:
I can't understand what you have written and what to find
Chapter : Algebra
Study : Math in Junior high school
x = 7 + √40
find √x of √x + 1
= √x + 1
= √(7+√40) + 1
in Formula is :
= √7+√40 = √x + √y
= (√7+√40)² = (√x + √y)²
= 7+√40 = x + 2√xy + y
= 7 + √40 = x + y + 2√xy
→ 7 = x + y → y = 7 - x ... Equation 1
→ √40 = 2√xy → √40 = 2.2√10 = 4√10
= xy = 10 ... Equation 2
substitution Equation 1 to 2 :
= xy = 10
= x(7-x) = 10
= 7x - x² = 10
= x² - 7x + 10 = 0
= (x - 5)(x - 2) = 0
= x = 5 or x = 2
Subsitution x = 5 and x = 2, to equation 1
#For x = 5
= y = 7 - x
= y = 7 - (5)
= y = 2
#For x = 2
= y = 7 - x
= y = 7 - (2)
= y = 5
and his x and y was find :
#Equation 1 :
= x = 5 and y = 2
#Equation 2 :
= x = 2 and y = 5
So that :
√7+√40 = √x + √y
= √7+√40 = √2 + √5
And that is answer of question :
= √2 + √5 + 1
The answer is 5.13 in²
Step 1. Calculate the diameter of the circle (d).
Step 2. Calculate the radius of the circle (r).
Step 3. Calculate the area of the circle (A1).
Step 4. Calculate the area of the square (A2).
Step 5. Calculate the difference between two areas (A1 - A2) and divide it by 4 (because there are total 4 segments) to get <span>the area of one segment formed by a square with sides of 6" inscribed in a circle.
</span>
Step 1:
The diameter (d) of the circle is actually the diagonal (D) of the square inscribed in the circle. The diagonal (D) of the square with side a is:
D = a√2 (ratio of 1:1:√2 means side a : side a : diagonal D = 1 : 1 : √2)
If a = 6 in, then D = 6√2 in.
d = D = 6√2 in
Step 2.
The radius (r) of the circle is half of its diameter (d):
r = d/2 = 6√2 / 2 = 3√2 in
Step 3.
The area of the circle (A1) is:
A = π * r²
A = 3.14 * (3√2)² = 3.14 * 3² * (√2)² = 3.14 * 9 * 2 = 56.52 in²
Step 4.
The area of the square (A2) is:
A2 = a²
A2 = 6² = 36 in²
Step 5:
(A1 - A2)/4 = (56.52 - 36)/4 = 20.52/4 = 5.13 in²
Answer:
X=7
Step-by-step explanation:
X = SQRT(49)
X = 7
Best regards