Given that <span>sample a has a higher melting point than sample
b. Therefore, sample a is a longer chain of a </span><span>fatlike solid substance. It could also be that the bonds present in sample a is much stronger which will require more energy to break. Hope this answers the question.</span>
The molar mass of CuCl2 is 134.45 g/mol; therefore, you divide 2.5 g of CuCl2 by 134.45 g of CuCl2 leaving you with 0.019 moles.
I hope this works.
PLEASE GIVE ME A BRAINIEST CROWN.
Moles of K = 32.4/39 = 0.83 mole. According to stoichiometry, 2 moles of K produces 1mole of H2. Therefore, 0.83 mole of K produces = 0.83/2 = 0.415 moles of H2. Therefore number molecules of H2 = moles of H2 x 6.02 x 10^23 = 2.4983 x 10^23 molecules. Hope this helps!
Answer:
Explanation:
The symbol of beryllium is Be. It is located in the second group on the periodic table.
Beryllium is a divalent cation with a charge of +2.
It is capable of losing 2 electrons in order to be like the noble gas He and this is a more stable configuration.
Based on Beer-Lambert's Law,
A = εcl ------(1)
where A = absorbance
ε = molar absorptivity
c = concentration
l = path length
Step 1: Calculate the concentration of the diluted Fe3+ standard
Use:
V1M1 = V2M2
M2 = V1M1/V2 = 10 ml*6.35*10⁻⁴M/55 ml = 1.154*10⁻⁴ M
Step 2 : Calculate the concentration of the sample solution
Based on equation (1) we have:
A(Fe3+) = ε(1.154*10⁻⁴)(1)
A(sample) = ε(C)(4.4)
It is given that the absorbances match under the given path length conditions, i.e.
ε(1.154*10⁻⁴)(1) = ε(C)(4.4)
C = 0.262*10⁻⁴ M
This is the concentration of Fe3+ in 100 ml of well water sample
Step 3: Calculate the concentration of Fe3+ in the original sample
Use V1M1 = V2M2
M1 = V2M2/V1 = 100 ml * 0.262*10⁻⁴ M/35 ml = 7.49*10⁻⁵M
Ans: Concentration of F3+ in the well water sample is 7.49*10⁻⁵M