The correct answer to this question is Water will move from left to right.
Water tends to move over to the side where there is less water.
For example,
if there's less water on the RIGHT side,
then the water will tend to move from left, to RIGHT. It <span>shows more solute molecules on the right, so water will move to this side by osmosis. I think it is to do with entropy and the tendency for systems to move to equilibrium if there is an increase in entropy</span>
This is a question similar to one wrestled with by Newton himself, who didn't understand why the planets didn't fall into each other. The reason satellites don't fly into space is because they are being pulled towards the planet by the planet's gravity.
<span />
Answer: The temperature of the gas reduced to 400K.
Explanation:
Stated that ; The pressure remains the same, that is initial and final pressure equals 1atm.
Applying Charles Law

Initial volume V1 = 1
Final volume V2 = 1/2 (halved)
Initial temperature T1 =800K
Final temperature T2 = ?
(1/800) = (1/2)/T2
T2 = 800/2
T= 400K
Therefore, when the volume is halved, the temperature reduced also to half ( 400K)
Answer:
Option E!
Explanation:
If we were to draw the lewis dot structure for IBr2 -, we would first count the total number of valence electrons ( " available electrons " ). Iodine has 7 valence electrons, and so does Bromine, but as Bromine exists in 2, the total number of valence electrons would be demonstrated below;

Don't forget the negative on the Bromine!
Now go through the procedure below;
1 ) Place Iodine in the middle and draw single bonds to each of the bromine.
2 ) Add three lone pairs on each of the Bromine's
3 ) Now we have 6 electrons left, if we were to exclude the electrons shared in the " single bonds. " This can be placed as three lone pairs on Iodine ( central atom )!
The molecular geometry can't be linear, as there are lone pairs on the atoms. This makes it bent.