Answer:
0.3 eV, 0.5eV,, 8 eV, 2.0eV, 2.50 eV, 2.8 eV
Explanation:
In a given material the emission and absorption spectra are equivalent, for which the emission spectrum observed at high temperature for the material corresponds to the transition between the energy states of the material, the process is that the electrons exist from the ground state until an excited state and after a short period of time or these electrons relax emitting photons.
In the absorption process, the material is at low temperature, ideally at A = 0K, whereby all states are in the ground state and all excited states are empty. therefore it can absorb the beam energy for each transition given from the ground state to each excited edtado.
Consequently, the lines above the absorption oscillate lines coincide with the lines of emotion, this we see lines oscillate at 0.3 eV, 0.5eV,, 8 eV, 2.0eV, 2.50 eV, 2.8 eV
To solve this problem we will start using the concepts related to the electric field, from there we will find the load exerted on the body. Through this load it will be possible to make a sum of forces in balance to find the load that a human supports. Finally with these values it will be possible to find the repulsive force. We will proceed as follows,
The electric field is

Here,
k = Coulomb's Constant
Q = Charge
R = Distance (At this case from the center of mass of the earth to the surface)
Rearranging to find the charge,

Replacing,


Since the electric field is directed towards the center of earth, the charge is negative.
PART A) Once the load is found we can proceed to apply the balance of Forces, for which the electrostatic force must be equivalent to the weight, this in order to satisfy the balance, therefore


Replacing,

Solving for q,

PART B) Finally using the given distance and the values of the found load we can find the repulsive Force, which is



PART C) The answer is no. According to the information found, we can conclude that traveling through an electric field is not viable because there is a repulsive force of great magnitude acting on the body.
D !.!.!.!.!.!!.!.!.!.!.!.!.!.!.!.!.!.!.!.!.!.!.!!..!!..!
The answer is unbalanced because the forces actually act on each other.
That first one you have selected (3,-3) works in both equations so it's correct.
good job.
you can do this guess and test method with multiple choice answers. If it works in both equations it is the solution. Otherwise use substitution or elimination to combine the two into one equation in only one variable. Then you can solve for the one variable first and use it to solve for the other.