It curves inward is the answer
Answer:
The speed of the rod's center of mass after the collision is 6 m/s.
Explanation:
Given that,
Mass of rod = 4 kg
Length l = 1.8 m
Moment of inertia
Mass of puck = 0.4 kg
Initial speed= 20 m/s
Distance = 0.3 m
Final speed = 10 m/s
(a). We need to calculate the speed v of the rod's center of mass after the collision
As there is no external force acting on the system so, linear and angular momentum of the system will be conserved.
Using conservation of momentum

Put the value into the formula



Hence, The speed of the rod's center of mass after the collision is 6 m/s.
Answer:
a) 
b) 
c) 
d) 
e) 
Explanation:
At that energies, the speed of proton is in the relativistic theory field, so we need to use the relativistic kinetic energy equation.
(1)
Here β = v/c, when v is the speed of the particle and c is the speed of light in vacuum.
Let's solve (1) for β.

We can write the mass of a proton in MeV/c².

Now we can calculate the speed in each stage.
a) Cockcroft-Walton (750 keV)



b) Linac (400 MeV)



c) Booster (8 GeV)



d) Main ring or injector (150 Gev)



e) Tevatron (1 TeV)



Have a nice day!
When he bends he kinda off his feet and light but if it’s not i’m so sorry this is just my thinking.
Answer:
they have the same mass
Explanation:
The force applied by the field is a function of the charge and velocity, so the acceleration experienced by a particle will be dependent upon its mass. Particles in orbits with the same radius are exhibiting the same acceleration, so must have the same mass.