1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FrozenT [24]
3 years ago
14

Find the missing values

Mathematics
1 answer:
pentagon [3]3 years ago
4 0
W,x,and y equal hte same so 4

You might be interested in
Which of the following is the difference of two squares?
JulijaS [17]

Step-by-step explanation:

  • ATTACHED IS THE SOLUTION!

8 0
2 years ago
Plz help for brianly
ozzi

Answer:

190.

Step-by-step explanation:

4 0
3 years ago
What is 7-2c=-3 equaled to
Savatey [412]

<u>c = 5 </u>

-3 - 7 = -10

-2c = -10

-10/ -2 = c

c = 5


6 0
3 years ago
Read 2 more answers
2x-3 = 4(x-1) -1 -2x is this equation conditional , contradiction, or identity
JulsSmile [24]

Answer:

identity

Step-by-step explanation:

3 0
3 years ago
Please prove this........​
Crazy boy [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π    →     C = π - (A + B)

                                    → sin C = sin(π - (A + B))       cos C = sin(π - (A + B))

                                    → sin C = sin (A + B)              cos C = - cos(A + B)

Use the following Sum to Product Identity:

sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]

cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]

Use the following Double Angle Identity:

sin 2A = 2 sin A · cos A

<u>Proof LHS → RHS</u>

LHS:                        (sin 2A + sin 2B) + sin 2C

\text{Sum to Product:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-\sin 2C

\text{Double Angle:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-2\sin C\cdot \cos C

\text{Simplify:}\qquad \qquad 2\sin (A + B)\cdot \cos (A - B)-2\sin C\cdot \cos C

\text{Given:}\qquad \qquad \quad 2\sin C\cdot \cos (A - B)+2\sin C\cdot \cos (A+B)

\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]

\text{Sum to Product:}\qquad 2\sin C\cdot 2\cos A\cdot \cos B

\text{Simplify:}\qquad \qquad 4\cos A\cdot \cos B \cdot \sin C

LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C    \checkmark

7 0
3 years ago
Other questions:
  • Sentence for the word vandalize
    13·2 answers
  • What is the probability of rolling a multiple of five
    7·2 answers
  • Sal set a timer for 8 minutes when he put the frozen pizza in the oven. When the timer went
    8·1 answer
  • I know when a probability is experimental because …
    14·1 answer
  • An economist wants to estimate the mean per capita income (in thousands of dollars) for a major city in Texas. He believes that
    5·1 answer
  • A jar contains 10 marbles marked with the numbers 1 through 10. You pick a marble at random. What is the probability of not pick
    5·1 answer
  • Can you solve this I need help?
    8·2 answers
  • 7th grade math please helpp i have alot of questions due in 10mins​
    10·1 answer
  • Triangle G E F is shown with its exterior angles. Line G F extends through point B. Line F E extends through point A. Line E G e
    9·1 answer
  • I’m honestly confused on how to solve for k. please help.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!