Answer:
1.(1,5) and (2,6) , 6-5/2-1=1/1 m=1 ,y=1x+b
5=1(1)+b 4=b
y=x+4
2.(1,1) and (3,-8) -8-1/3-1=-9/2 m=-9/2 ,y=-9/2x+b
1=-9/2(1)+b b=11/2
y=-9/x+11/2
3.(2.-3) and (5,-2) m=1/3 ,y=1/3x+b
-3=1/3(2)+b -3=2/3+b
-3-2/3=b
b=-11/3
y=1/3x-11/3
4.(2,5)and (4,3) m=-1 y=-1x+b
5=-1(2)+b 5=-2+b
5+2=b
b=7
y=-1x+7
6.(-3,-5) and (-1,-3) m=2/2=1 y=1x+b
-5=1(-3)+b -5=-3+b
-5+3=b
-2=b
y=1x-2
Step-by-step explanation:
Answer:
where Is the problem......
Answer:
P (3 or fewer) =0.2650
Step-by-step explanation:
Mean = x` = 5
The Poisson distribution formula is given by
P(X) = e-ˣ` x`ˣ/ x!
The mean is 5 and the X takes the values 0,1,2,and 3 which means 3 or fewer, so we add the probability of all the values of X to get the desired Value of X.
P(3 or fewer ) = e-⁵ (5)³/3!+ e-⁵ (5)²/2! +e-⁵ (5)/1!+e-⁵ (5)⁰/0!
Putting the Values
P (3 or fewer) = 0.006737 . 125 / 6 + 0.006737 . 25 / 2 +0.006737 . 5 / 1 + 0.006737 . 1 / 1
P (3 or fewer) = 0.140374 + 0.08422+ 0.03369 +0.006737
P (3 or fewer) =0.2650
Answer:
c. Different departments tend to pay different salaries, and dogs are more likely than cats to work in lower-paying departments.
Explanation:
The only explanation for difference in median results is that dogs take up jobs in both higher paying departments and lower paying departments while cats take up jobs in only higher paying departments only. In other words the median results for dogs when compared in general would be higher than that of the cats