Answer:
259 Hz or 269 Hz
Explanation:
Beat: This is the phenomenon obtained when two notes of nearly equal frequency are sounded together. The S.I unit of beat is Hertz (Hz).
From the question,
Beat = f₂-f₁................ Equation 1
Note: The frequency of the other instrument is either f₁ or f₂.
If the unknown instrument's frequency is f₁,
Then,
f₁ = f₂-beat............ equation 2
Given: f₂ = 264 Hz, Beat = 5 Hz
Substitute into equation 2
f₁ = 264-5
f₁ = 259 Hz.
But if the unknown frequency is f₂,
Then,
f₂ = f₁+Beat................. Equation 3
f₂ = 264+5
f₂ = 269 Hz.
Hence the beat could be 259 Hz or 269 Hz
<h2>
Answer: Toward the center of the circle.</h2>
This situation is characteristic of the uniform circular motion , in which the movement of a body describes a circumference of a given radius with constant speed.
However, in this movement the velocity has a constant magnitude, but its direction varies continuously.
Let's say
is the velocity vector, whose direction is perpendicular to the radius
of the trajectory, therefore
the acceleration
is directed toward the center of the circumference.
The correct answer to the question is : C) The horizontal momentum and the vertical momentum are both conserved.
EXPLANATION :
Before coming into any conclusion, first we have to understand the law of conservation of momentum.
As per the law of conservation of momentum, the total linear as well as angular momentum of an isolated system is always conserved . The law of conservation of energy is a universal fact.
Hence, during any type of collision, the total momentum is always conserved.
Hence, the total horizontal momentum as well as total vertical momentum are always conserved during both elastic as well as inelastic collision.
Answer:
1 sec
Explanation:
Horizontal distance (x) = 6m
Vertical distance (y) = 1.25m
Hang time is the duration the object is in the air before it reaches maximum height.
The time of free fall is given by
t = √2y/g
g = acceleration due to gravity
t = √(2*1.25)/9.8
t = √2.5/9.8
t = 0.5secs
Hang time = 2*0.5
= 1 sec
Answer:
0.53 m
Explanation:
First of all, we have to consider the vertical motion of the ball, in order to find the time it takes for the marble to reach the ground. The initial height is
, the initial vertical velocity is zero, while the acceleration is
, so the vertical position at time t is given by

By demanding y(t)=0, we find the time t at which the ball reaches the ground:


Now we can find the horizontal range of the marble: we know the initial horizontal speed (v=1.24 m/s), we know the total time of the motion (t=0.43 s), and since the horizontal speed is constant, the total distance traveled on the horizontal direction is
