1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalka [10]
3 years ago
8

Explain why the boiling point of a liquid varies with atmospheric pressure

Physics
1 answer:
OLEGan [10]3 years ago
5 0
The boiling point of water, or any liquid, varies according to the surrounding atmospheric pressure. A liquid boils, or begins turning to vapor, when its internal vapor pressure equals the atmospheric pressure.
You might be interested in
A motor does a total of 480 joules of work in 5.0 seconds to lift a 12-kilogram block to the top of a rampThe average power deve
Flauer [41]

Answer:

there it is fella

we neglect the mass data

3 0
3 years ago
Conclusion 1. why do engineers place tolerances on dimensions? 2. what are the three types of tolerances that appear on dimensio
Butoxors [25]

Tolerance enables the engineer to be informed when somethings requires replacement or if there is a drawback with too much war.

 

The three types of tolerances that appear on dimensioned drawings are limit, bilateral, and unilateral.

 

<span>General tolerances are normally found in the information blocks of the blueprint while a specific tolerance is noted for certain areas of the blueprint.</span>
7 0
4 years ago
A fan spins at 6.0 rev/s. You turn it off, and it slows at 1.0 rev/s2. What is the angular displacement before it stops
Komok [63]

Answer:

Angular displacement before it stops = 18 rev

Explanation:

Given:

Speed of fan w(i) = 6 rev/s

Speed of fan (Slow) ∝ = 1 rev/s

Final speed of fan w(f) = 0 rev/s

Find:

Angular displacement before it stops

Computation:

w(f)² = w(i) + 2∝θ

0² = 6² + 2(1)θ

0 = 36 + 2θ

2θ = -36

Angular displacement before it stops = -36 / 2

θ = -18

Angular displacement before it stops = 18 rev

4 0
3 years ago
A feeding buffer protects ______ path from delays in ______ ____.
Bad White [126]
<span> A feeding buffer protects critical path from delays in non-Critical path

Basically, a feeding buffer acts as a protection for the critical chains from the possible violations in the feeding chains.
By doing this, you would add a protection to the baseline of the deadline of your current projects</span>
7 0
4 years ago
Un bloque de 20kg de masa se desplaza horizontalmente en la dirección de eje X por acción de una fuerza horizontal variable F =
zmey [24]

Answer:

a) El trabajo realizado por esta fuerza mientras el bloque se mueve desde la posición x = + 10 m hasta la posición x = + 20 m es 900 joules.

b) La rapidez del bloque en la posición x = + 20 metros es aproximadamente 5.701 metros por segundo.

Explanation:

a) El trabajo expermentado por el bloque (W), medido en joules, es definida por la siguiente ecuación integral:

W = \int\limits^{x_{max}}_ {x_{min}} F(x) \, dx (1)

Donde:

x_{min}, x_{max} - Posiciones mínima y máxima del bloque, medidos en metros.

F(x) - Fuerza horizontal aplicada al bloque, medida en newtons.

Si conocemos que F(x) = 6\cdot x, x_{min} = 10\,m y x_{max} = 20\,m, entonces el trabajo realizado por esta fuerza es:

W = \int\limits^{20\,m}_{10\,m} {6\cdot x} \, dx (2)

W = 6\int\limits^{20\,m}_{10\,m} x\, dx

W = 3\cdot x^{2}\left|\limits_{10\,m}^{20\,m}

W = 3\cdot [(20\,m)^{2}-(10\,m)^{2}]

W = 900\,J

El trabajo realizado por esta fuerza mientras el bloque se mueve desde la posición x = + 10 m hasta la posición x = + 20 m es 900 joules.

b) La rapidez final del bloque se determina mediante de Teorema del Trabajo y la Energía, es decir:

W = K_{f}-K_{o} (3)

Donde son K_{o}, K_{f} las energías cinéticas traslacionales inicial y final, medidos en joules.

Al aplicar la definición de energía cinética traslacional, expandimos y simplificamos la ecuación como sigue:

W = \frac{1}{2}\cdot m \cdot (v_{f}^{2}-v_{o}^{2}) (4)

Donde:

m - Masa del bloque, medido en kilogramos.

v_{o}, v_{f} - Rapideces inicial y final del bloque, medidos en metros por segundo.

\frac{2\cdot W}{m} = v_{f}^{2}-v_{o}^{2}

v_{f} = \sqrt{\frac{2\cdot W}{m}+v_{o}^{2}}

Si conocemos que W = 900\,J, m = 20\,kg y v_{o} = \sqrt{10}\,\frac{m}{s}, entonces la rapidez final del bloque es:

v_{f} = \sqrt{\frac{900\,J}{2\cdot (20\,kg)}+10\,\frac{m^{2}}{s^{2}}  }

v_{f} \approx 5.701\,\frac{m}{s}

La rapidez del bloque en la posición x = + 20 metros es aproximadamente 5.701 metros por segundo.

6 0
3 years ago
Other questions:
  • A small marble attached to a massless thread is hung from a horizontal support. When the marble is pulled back a small distance
    11·1 answer
  • Which describes how a turbine works to produce energy for electricity? A. Energy from various energy sources, such as wind or fr
    12·1 answer
  • Elements in an blank or blank of the periodic table have similar characteristics
    15·1 answer
  • Finish the following sentence. almost all of the oxygen (o2) one consumes in breathing is converted to _____________.
    7·1 answer
  • Change in velocity from 2 to -3
    8·1 answer
  • A perturbation in the temperature of a stream leaving a chemical reactor follows a decaying sinusoidal variation, according to t
    14·1 answer
  • Please help meeeee!!!!!!
    15·1 answer
  • 2. An object is dropped from rest. Calculate its velocity after 2.5s if it is dropped:
    6·1 answer
  • Which of the following is a correct definition of radiant energy?
    11·2 answers
  • What is the amount of matter in a substance?​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!