Answer:
It is an imaginary number.
Step-by-step explanation:
The square root of negative one is "i," the imaginary number. This concept is immensely useful in mathematics, as it allows for there to be square roots of negative numbers, which is otherwise not possible using only real numbers.
Any number that includes a negative square root is called an imaginary number. For example, the square root of -9 equals 3i, an imaginary number. When an imaginary number and a real number are combined, for example 2 + 3i, this is called a complex number. Complex numbers have many real world applications, including manipulating sound waves and calculating electrical currents.
By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
<h3>How to evaluate a piecewise function at given values</h3>
In this question we have a <em>piecewise</em> function formed by three expressions associated with three respective intervals. We need to evaluate the expression at a value of the <em>respective</em> interval:
<h3>r(- 3): </h3>
-3 ∈ (- ∞, -1]
r(- 3) = - 2 · (- 3) + 9
r (- 3) = 15
<h3>r(- 1):</h3>
-1 ∈ (- ∞, -1]
r(- 1) = - 2 · (- 1) + 9
r (- 1) = 11
<h3>r(1):</h3>
1 ∈ (-1, 5)
r(1) = 2 · 1² - 4 · 1 - 5
r (1) = - 7
<h3>r(5):</h3>
5 ∈ [5, + ∞)
r(5) = 4 · 5 - 7
r (5) = 13
By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
To learn more on piecewise functions: brainly.com/question/12561612
#SPJ1
(-3,2)))))))))))))))))))))))))))))))))))
Answer:
Algebra
Topics
How do you find the intercepts of x2y−x2+4y=0?
Algebra Graphs of Linear Equations and Functions Intercepts by Substitution
2 Answers
Gió
Mar 24, 2015
For the intercepts you set alternately x=0 and y=0 in your function:
and graphically:
Answer link
Alan P.
Mar 24, 2015
On the X-axis y=0
So
x2y−x2+4y=0
becomes
x2(0)−x2+4(0)=0
→−x2=0
→x=0
On the Y-axis x=0
and the original equation
x2y−x2+4y=0
becomes
(0)2y−(0)2+4y=0
→y=0
The only intercept for the given equation occurs at (0,0)
Answer link
Related questions
What is the x and y Intercepts?
How many intercepts can a line have?
How do you use substitution to find intercepts?
How do you identify the intercepts on a linear graph?
How do you use the x and y intercepts to graph a linear equation?
How do you find the x and y intercept for y=2x+3?
How do you find the x intercept for y=2?
What is the y intercept for the y=2 graph?
What is the y intercept for x=−1?
How do you find the x-intercept of the line
Answer:
Step-by-step explanation:
