1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astra-53 [7]
3 years ago
13

Determine consecutive integer values of x between which each real zero is located.

Mathematics
1 answer:
frozen [14]3 years ago
8 0

Answer:

1. x = -2 or x = sqrt(6) - 2 or x = -2 - sqrt(6)

2. x = -2.10947 or x = -0.484343 or x = 1.67884 or x = 2.91497

Step-by-step explanation:

Solve for x:

x^3 + 6 x^2 + 6 x - 4 = 0

The left hand side factors into a product with two terms:

(x + 2) (x^2 + 4 x - 2) = 0

Split into two equations:

x + 2 = 0 or x^2 + 4 x - 2 = 0

Subtract 2 from both sides:

x = -2 or x^2 + 4 x - 2 = 0

Add 2 to both sides:

x = -2 or x^2 + 4 x = 2

Add 4 to both sides:

x = -2 or x^2 + 4 x + 4 = 6

Write the left hand side as a square:

x = -2 or (x + 2)^2 = 6

Take the square root of both sides:

x = -2 or x + 2 = sqrt(6) or x + 2 = -sqrt(6)

Subtract 2 from both sides:

x = -2 or x = sqrt(6) - 2 or x + 2 = -sqrt(6)

Subtract 2 from both sides:

Answer: x = -2 or x = sqrt(6) - 2 or x = -2 - sqrt(6)

_________________________________________

Solve for x:

x^4 - 2 x^3 - 6 x^2 + 8 x + 5 = 0

Eliminate the cubic term by substituting y = x - 1/2:

5 + 8 (y + 1/2) - 6 (y + 1/2)^2 - 2 (y + 1/2)^3 + (y + 1/2)^4 = 0

Expand out terms of the left hand side:

y^4 - (15 y^2)/2 + y + 117/16 = 0

Subtract -3/2 sqrt(13) y^2 - (15 y^2)/2 + y from both sides:

y^4 + (3 sqrt(13) y^2)/2 + 117/16 = (3 sqrt(13) y^2)/2 + (15 y^2)/2 - y

y^4 + (3 sqrt(13) y^2)/2 + 117/16 = (y^2 + (3 sqrt(13))/4)^2:

(y^2 + (3 sqrt(13))/4)^2 = (3 sqrt(13) y^2)/2 + (15 y^2)/2 - y

Add 2 (y^2 + (3 sqrt(13))/4) λ + λ^2 to both sides:

(y^2 + (3 sqrt(13))/4)^2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = -y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2

(y^2 + (3 sqrt(13))/4)^2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = (y^2 + (3 sqrt(13))/4 + λ)^2:

(y^2 + (3 sqrt(13))/4 + λ)^2 = -y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2

-y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = (2 λ + 15/2 + (3 sqrt(13))/2) y^2 - y + (3 sqrt(13) λ)/2 + λ^2:

(y^2 + (3 sqrt(13))/4 + λ)^2 = y^2 (2 λ + 15/2 + (3 sqrt(13))/2) - y + (3 sqrt(13) λ)/2 + λ^2

Complete the square on the right hand side:

(y^2 + (3 sqrt(13))/4 + λ)^2 = (y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)))^2 + (4 (2 λ + 15/2 + (3 sqrt(13))/2) (λ^2 + (3 sqrt(13) λ)/2) - 1)/(4 (2 λ + 15/2 + (3 sqrt(13))/2))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 15/2 + (3 sqrt(13))/2) (λ^2 + (3 sqrt(13) λ)/2) - 1 = 8 λ^3 + 18 sqrt(13) λ^2 + 30 λ^2 + 45 sqrt(13) λ + 117 λ - 1 = 0.

Thus the root λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + (3 sqrt(13))/4 + λ)^2 = (y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)))^2

Take the square root of both sides:

y^2 + (3 sqrt(13))/4 + λ = y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)) or y^2 + (3 sqrt(13))/4 + λ = -y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) + 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2))

Solve using the quadratic formula:

y = 1/4 (sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) + sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 - 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) or y = 1/4 (sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) - sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 - 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) or y = 1/4 (sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 + 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13))) - sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13))) or y = 1/4 (-sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) - sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 + 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) where λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3))

Substitute λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3)) and approximate:

y = -2.60947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x - 1/2 = -2.60947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x - 1/2 = -0.984343 or y = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or x = -0.484343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x = -0.484343 or x - 1/2 = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or x = -0.484343 or x = 1.67884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x = -0.484343 or x = 1.67884 or x - 1/2 = 2.41497

Add 1/2 to both sides:

Answer: x = -2.10947 or x = -0.484343 or x = 1.67884 or x = 2.91497

You might be interested in
Please I really need help I’m in a test right now plssss guys
laiz [17]

Answer:

12x + 50

Y - intercept = 50

Slope = 12

Step-by-step explanation:

The y - intercept represents the original registrational fee even if you have never taken lessons.

The slope represents what you have to pay every time you take a lesson.

6 0
3 years ago
Triangle ABC has vertices at A(2, 2), B(4,7), and C(6,2). Classify the triangle according to the side lengths.
zmey [24]

Answer:

Isosceles triangle

Step-by-step explanation:

Length AB

√(4 - 2)² + (7 - 2)²

√2² + 5²

√4 + 25

√29

Length AC

6 - 2 = 4

Length BC

√(6 - 4)² + (2 - 7)²

√2² + (-5)²

√4 + 25

√29

Length AB and BC is the same.

Length AC is the longest side.

Therefore, it is an isosceles triangle.

4 0
3 years ago
What are the domain and range of the function f(x)= 3^x+5
rewona [7]

Answer:

Step-by-step explanation:

Domain:all real values

Range:[5,∞)

5 0
3 years ago
Other names for a rectangle?
Vitek1552 [10]
The answer is square

Hope it helps
7 0
3 years ago
Read 2 more answers
Convert 12 and a half of 30
tamaranim1 [39]

Answer:

375

Step-by-step explanation:

12½[30] → 25⁄2[30]

Multiply 25 by 30 [750] then divide by 2 to get 375.

I am joyous to assist you anytime.

7 0
3 years ago
Other questions:
  • each side of triangle xyz has length 9 .Find the area of the region inside the circumcircle of the triangle but outside the tria
    9·1 answer
  • If f(x)= x^2 -2 and g(x)=x-3, what is (f o g)(X)?
    7·1 answer
  • HELP PLEASE WILL MARK YOU BRAINLIEST
    10·1 answer
  • Cx=d+r solve for x, pls help
    7·1 answer
  • What is the middle of a circle called
    5·1 answer
  • Is it ever possible that cos (A−B)=cos ⁡A−cos ⁡B? Why
    7·1 answer
  • Question 4 of 10<br> What is i86<br> O A. -1<br> B. 1<br> O c. i<br> O D. 1
    9·1 answer
  • Find the area for this problem
    5·1 answer
  • Ahh help!!
    12·1 answer
  • Pls help me I will merl you as brain
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!