Answer:
See Explanation
Step-by-step explanation:
![log(x + y) = log3 + \frac{1}{2} logx+ \frac{1}{2} logy \\ \\ log(x + y) = log3 + logx ^{\frac{1}{2}} + logy ^{\frac{1}{2}}\\ \\ log(x + y) = log3 + log(xy) ^{\frac{1}{2}} \\ \\ log(x + y) = log[3(xy) ^{\frac{1}{2}}] \\ \\ x + y = 3(xy) ^{\frac{1}{2}} \\ \\ squaring \: both \: sides \\ {(x + y)}^{2} = \bigg(3(xy) ^{\frac{1}{2}} \bigg)^{2} \\ \\ {x}^{2} + {y}^{2} + 2xy = 9xy \\ \\ {x}^{2} + {y}^{2} = 9xy - 2xy \\ \\ \purple{ \bold{{x}^{2} + {y}^{2} = 7xy}} \\ thus \: proved](https://tex.z-dn.net/?f=log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20logx%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20logy%20%5C%5C%20%20%5C%5C%20log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%20%20logx%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%2B%20%20%20logy%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%20%20%5C%5C%20%20log%28x%20%2B%20y%29%20%3D%20log3%20%2B%20%20%20%20log%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5C%5C%20%20%5C%5C%20log%28x%20%2B%20y%29%20%3D%20%20log%5B3%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D%20%5C%5C%20%20%5C%5C%20x%20%2B%20y%20%3D%203%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5C%5C%20%20%5C%5C%20squaring%20%5C%3A%20both%20%5C%3A%20sides%20%5C%5C%20%20%7B%28x%20%2B%20y%29%7D%5E%7B2%7D%20%20%3D%20%20%5Cbigg%283%28xy%29%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cbigg%29%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%2B%202xy%20%3D%209xy%20%5C%5C%20%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%3D%209xy%20-%202xy%20%5C%5C%20%20%5C%5C%20%20%20%5Cpurple%7B%20%5Cbold%7B%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%20%3D%207xy%7D%7D%20%5C%5C%20thus%20%5C%3A%20proved)
First of all, just to avoid being snookered by a trick question, we should verify that these are really right triangles:
7² + 24² really is 25² , and 8² + 15² really is 17² , so we're OK there.
In the first one:
sin(one acute angle) = 7/25 = 0.28
the angle = sin⁻¹ (0.28) = 16.26°
the other acute angle = (90° - 16.26°) = 73.74°
In the second one:
sin(one acute angle) = 8/17 = 0.4706...
the angle = sin⁻¹ (0.4706...) = 28.07°
the other acute angle = (90° - 28.07°) = 61.93°
I'm sorry, but just now, I don't know how to do the
third triangle in the question.
Answer:
6 Hours
Explanation:
Linear Equation: mx+b=y
x variable: Hour
Hourly Fee: $15(x)
(Initial) Rent Fee: $25
Balance: $100
Equation:
15x+25=100
15x+25-25=100-25 -- <em>Separate the constant terms from the x by subtracting 25 from both sides.</em>
15x=100
15x/15=100/15 --<em> Isolate the x variable by dividing 15 from both sides.</em>
x=6.6.. <em>-- Round down to 6 (not 7) because you can't afford to snowboard for 7 hours with less than $15. </em>
x=6 Hours
Answer:
Surface area is found:
Surface Area = 1700 cm²
Step-by-step explanation:
(The cereal box is shown in the ATTACHMENT)
The surface area of a rectangular prism can be found by added the areas of all 6 sides of the rectangular prism.
L = length = 20 cm
H = height = 30 cm
W = Width = 5 cm
<h3 /><h3>Side 1:</h3>
A(1) = L×H
A(1) = 20×30
A(1) = 600 cm²
<h3>Side 2:</h3>
As the measurements of the side at the back of side 1 has the same measurement of side 1. then:
A(2) = 600 cm²
<h3>Side 3:</h3>
A(3) = L×W
A(3) = 20×5
A(3) = 100 cm²
<h3>Side 4:</h3>
As the measurements of the side at the back of side 4 has the same measurement of side 4. then:
A(4) = 100 cm²
<h3>Side 5:</h3>
A(5) = H×W
A(5) = 30×5
A(5) = 150 cm²
<h3>Side 6:</h3>
As the measurements of the side at the back of side 5 has the same measurement of side 5. then:
A(6) = 150 cm²
<h3>Surface Area:</h3>
Adding areas of all the sides
A(1) + A(2) + A(3) +A(4) + A(5) + A(6) = 600 + 600 + 100 +100 + 150 +150
Surface Area = 1700 cm²
Answer:
180 Degrees
Step-by-step explanation:
I had the same question and it worked/correct.