Answer:
111 girls
Step-by-step explanation:
Given
Boys: Every 17 outdoor ≈ 20 indoor
Girls: 3:2 outdoor to indoor
First, we'll determine the ratio of outdoor to indoor for boys;
Recall that;
17 choose indoor while 20 choose outdoor;
The ratio of outdoor to indoor is;
20 : 17
Convert to fraction:
![\frac{20}{17}](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B17%7D)
Let x represent number of boys that choose indoor when 85 boys chose outdoor;
The ratio of outdoor to indoor is;
x : 85
Convert to fraction
![\frac{x}{85}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B85%7D)
Equate both fractions
![\frac{20}{17} = \frac{x}{85}](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B17%7D%20%3D%20%5Cfrac%7Bx%7D%7B85%7D)
Multiply both sides by 85
![85 * \frac{20}{17} = \frac{x}{85} * 85](https://tex.z-dn.net/?f=85%20%2A%20%5Cfrac%7B20%7D%7B17%7D%20%3D%20%5Cfrac%7Bx%7D%7B85%7D%20%2A%2085)
![85 * \frac{20}{17} = x](https://tex.z-dn.net/?f=85%20%2A%20%5Cfrac%7B20%7D%7B17%7D%20%3D%20x)
![\frac{1700}{17} = x](https://tex.z-dn.net/?f=%5Cfrac%7B1700%7D%7B17%7D%20%3D%20x)
![100 = x](https://tex.z-dn.net/?f=100%20%3D%20x)
![x = 100](https://tex.z-dn.net/?f=x%20%3D%20100)
This implies that when 85 chose outdoor, 100 chose indoor for boys;
Total = 100 + 85
Total = 185 boys surveyed
<em>Recall that the question says the same number of boys and girls were surveyed</em>
This implies that
Total Girls Surveyed = 185
For the girl ratio;
Outdoor to Indoor= 3:2
Number of girls that chose outdoor is as follows;
![Outdoor = \frac{3}{3 + 2} * Total](https://tex.z-dn.net/?f=Outdoor%20%3D%20%5Cfrac%7B3%7D%7B3%20%2B%202%7D%20%2A%20Total)
![Outdoor = \frac{3}{3 + 2} * 185](https://tex.z-dn.net/?f=Outdoor%20%3D%20%5Cfrac%7B3%7D%7B3%20%2B%202%7D%20%2A%20185)
![Outdoor = \frac{3}{5} * 185](https://tex.z-dn.net/?f=Outdoor%20%3D%20%5Cfrac%7B3%7D%7B5%7D%20%2A%20185)
![Outdoor = \frac{555}{5}](https://tex.z-dn.net/?f=Outdoor%20%3D%20%5Cfrac%7B555%7D%7B5%7D)
![Outdoor = 111](https://tex.z-dn.net/?f=Outdoor%20%3D%20111)
<em>Hence, the number of girls that chose outdoor is 111</em>