1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Softa [21]
3 years ago
15

For what value of a does (one-ninth) Superscript a + 1 Baseline = 81 Superscript a + 1 Baseline times 27 Superscript 2 minus a?

–4 –2 2 6
Mathematics
2 answers:
grin007 [14]3 years ago
8 0

Answer:

-4

Step-by-step explanation:

symbolab.com baybee thats whats up

Natalka [10]3 years ago
4 0

Answer:

The value of a is -4

Step-by-step explanation:

(\frac{1}{9}) ^{a+1} =  81^{a+1}  ×  27^{2-a}  ------------------------------------(1)

No solve this, we need to take note that 9 = 3² , 81 = 3^{4}     and 27 = 3^{3}

Now, we are going to replace 9 , 81 and 27 by  3²,  3^{4}  and 3^{3} respectively in equation(1)

(\frac{1}{3^{2} }) ^{a+1}  =   (3^{4}) ^{a+1}  ×   (3^{3} )^{2-a}   ------------------------------(2)

also \frac{1}{3^{2} }  =  3^{-2}  

we are going to replace  \frac{1}{3^{2} }   by  3^{-2}   in equation (2)

(3^{-2})^{a+1}      =   (3^{4}) ^{a+1}  ×   (3^{3} )^{2-a}

We can now open the parenthesis

3^{-2a-2}  =  3^{4a + 4}  ×  3^{6-3a}

At the right-hand side of the equation, we will apply the law of indices that state  x^{a} × x^{b}  =  x^{a+b}  

This implies we will take just 3 and then add-up all the powers

3^{-2a-2}  = 3^{4a + 4+ 6-3a}

The 3 on the left-hand side will cancel-out the 3 on the right-hand side leaving us with just the powers

-2a - 2 = 4a + 4 + 6 - 3a

-2a - 2 = 4a + 10 - 3a

collect like-term

Which means we will take all the digits with variable to the left-hand side and then take all the digits standing alone to the right-hand side of the equation

-2a - 4a + 3a = 10 + 2

-6a + 3a = 12

-3a = 12

Divide both-side of the equation by -3

\frac{-3a}{-3} = \frac{12}{-3}

a = -4

Therefore, the value of a is -4

You might be interested in
Evaluate : limx→ tan2-sin2x x3
GrogVix [38]

Given:

\lim _{x\to0}\frac{\tan 2x-\sin 2x}{x^3}

Solve:

\lim _{x\to0}\frac{\tan 2x-\sin 2x}{x^3}

Use l'hopital's rule:

\begin{gathered} =\lim _{x\to0}\frac{\frac{d}{dx}(-\sin 2x+\tan 2x)}{\frac{d}{dx}(x^3)} \\ =\lim _{x\to0}\frac{-2\cos (2x)+2\tan ^2(2x)+2}{3x^2} \end{gathered}

Simplify:

\begin{gathered} =\lim _{x\to0}\frac{-2\cos (2x)+2\tan ^2(2x)+2}{3x^2} \\ =\lim _{x\to0}\frac{2(-\cos (2x)+\tan ^2(2x)+1)}{3x^2} \end{gathered}

Apply the constant multiple rule:

\begin{gathered} \lim _{x\to0}cf(x)=c\lim _{x\to0}f(x) \\ \text{With c=}\frac{2}{3} \\ f(x)=\frac{-\cos (2x)+\tan ^2(2x)+1}{x^2} \end{gathered}\begin{gathered} =\frac{2\lim _{x\to0}\frac{-\cos (2x)+\tan ^2(2x)+1}{x^2}}{3} \\ =\frac{2\lim _{x\rightarrow0}\frac{(4\tan ^2(2x)+4)\tan (2x)+2\sin (2x)}{2x}}{3} \end{gathered}

Similary :

\begin{gathered} =\frac{2\lim _{x\to0}(2\cos (2x)+12\tan ^4(2x)+16\tan ^2(2x)+4)}{3} \\ =\frac{2(6)}{3} \\ =4 \end{gathered}

8 0
1 year ago
F is perpendicular to line m whats blank
erastova [34]
Hi, I would like to answer you question to help you out but unfortunately there is not enough information for me to do so. Maybe if you put a picture along with those words then I could solve the problem.

For example, when stating a problem such as 2 plus?= 4

Then I am able to solve by doing...

4-2=2

Check:
2 plus 2=4

But with your problem, F is perpendicular to line m whats blank

Then the only thing I am able to do is...

F=m
blank=?

Like I said I would love to help but I need a little more info than what is present now. Thanks.

8 0
3 years ago
Can u express 9 and 9 as a mixed number ? Why or why not ? 9and 9 means fraction
Lostsunrise [7]
Yes:

1 & 0/9
   or
1 & 1/1
6 0
4 years ago
FIRST PERSON TO WRITE GUACAMOLE SEVEN TIMES GETS BRAINLIEST
andrew11 [14]

GUACAMOLE GUACAMOLE GUACAMOLE GUACAMOLE GUACAMOLE GUACAMOLE GUACAMOLE

8 0
3 years ago
Read 2 more answers
The length of a rectangle is increasing at a rate of 4 meters per day and the width is increasing at a rate of 1 meter per day.
puteri [66]

Answer:

\displaystyle \frac{dA}{dt} = 102 \ m^2/day

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Geometry</u>

Area of a Rectangle: A = lw

  • l is length
  • w is width

<u>Calculus</u>

Derivatives

Derivative Notation

Implicit Differentiation

Differentiation with respect to time

Derivative Rule [Product Rule]:                                                                              \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle l = 10 \ meters<u />

<u />\displaystyle \frac{dl}{dt} = 4 \ m/day<u />

<u />\displaystyle w = 23 \ meters<u />

<u />\displaystyle \frac{dw}{dt} = 1 \ m/day<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Area of Rectangle] Product Rule:                                                                 \displaystyle \frac{dA}{dt} = l\frac{dw}{dt} + w\frac{dl}{dt}

<u>Step 3: Solve</u>

  1. [Rate] Substitute in variables [Derivative]:                                                    \displaystyle \frac{dA}{dt} = (10 \ m)(1 \ m/day) + (23 \ m)(4 \ m/day)
  2. [Rate] Multiply:                                                                                                \displaystyle \frac{dA}{dt} = 10 \ m^2/day + 92 \ m^2/day
  3. [Rate] Add:                                                                                                      \displaystyle \frac{dA}{dt} = 102 \ m^2/day

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Implicit Differentiation

Book: College Calculus 10e

8 0
3 years ago
Other questions:
  • Relationship between the values of given digits 6s in 6,600
    7·1 answer
  • Identify all of the root(s) of g(x) = (x2 + 3x - 4)(x2 - 4x + 29).
    11·2 answers
  • Hey can anyone pls pls pls help me in dis I WILL MARK U AS BRAINLIEST!!!!!
    6·1 answer
  • Dividing and Multiplying functions
    15·1 answer
  • Find the first term in the sequence when u(subscript)31=197 and d= 10.
    5·1 answer
  • Which operations is the following set closed under: {2, 4, 6, ....}?
    5·2 answers
  • Please answer ASAP!<br><br> Which proportional relationship has the greatest rate of change?
    6·1 answer
  • Which function represents exponential decay?
    10·2 answers
  • What is the percent of change from 6 to 9
    15·1 answer
  • Need help with this algebra question
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!