let's notice something, we have a circle with a radius of 12 and one 90° sector is cut off, so only three 90° sectors of the circle are left shaded, so namely the cone will be using 3/4 of that circle.
think of it as, this shaded area is some piece of paper, and you need to pull it upwards and have the cutoff edges meet, and when that happens, you'll end up with a cone-shaped paper cup, and pour in some punch.
now, once we have pulled up the center of the circle to make our paper cup, there will be a circular base, its diameter not going to be 24, it'll be less, but whatever that base is, we know that is going to have the same circumference as those in the shaded area. Well, what is the circumference of that shaded area?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=12 \end{cases}\implies C=2\pi 12\implies C=24\pi \implies \stackrel{\textit{three quarters of it}}{24\pi \cdot \cfrac{3}{4}} \\\\\\ 6\pi \cdot 3\implies 18\pi](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D12%20%5Cend%7Bcases%7D%5Cimplies%20C%3D2%5Cpi%2012%5Cimplies%20C%3D24%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bthree%20quarters%20of%20it%7D%7D%7B24%5Cpi%20%5Ccdot%20%5Ccfrac%7B3%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%206%5Cpi%20%5Ccdot%203%5Cimplies%2018%5Cpi)
well then, the circumference of that circle at the bottom will be 18π, so, what is the diameter of a circle with a circumferenc of 18π?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ C=18\pi \end{cases}\implies 18\pi =2\pi r\implies \cfrac{18\pi }{2\pi }=r\implies 9=r \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{diameter is twice the radius}}{d=18}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20C%3D18%5Cpi%20%5Cend%7Bcases%7D%5Cimplies%2018%5Cpi%20%3D2%5Cpi%20r%5Cimplies%20%5Ccfrac%7B18%5Cpi%20%7D%7B2%5Cpi%20%7D%3Dr%5Cimplies%209%3Dr%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bdiameter%20is%20twice%20the%20radius%7D%7D%7Bd%3D18%7D~%5Chfill)
Answer:
Use the graph to write a linear function that relates y to x. The points lie on a line. Find the slope and y-intercept of the line. Because the line crosses the y-axis at (0, −3), the y-intercept is −3.w
Step-by-step explanation:
There are three standard forms for linear functions y = f(x):
f(x) = mx + b (The "slope-intercept" form),
y - yo = m(x - x0) or, equivalently, f(x) = y0 + m(x - x0) (The "point-slope" or "Taylor" form), and.
Ax + By = C (The "general form") which defines y implicitly as a function of x as long as B 0.
Y - 2 = -3/4 (x - 6)
y = -3/4 (x - 6) + 2
When, x = -2,
y = -3/4 (-2 - 6) + 2 = -3/4 (-8) + 2 = 6 + 2 = 8
One point is (-2, 8)
When, x = 2,
y = -3/4 (2 - 6) + 2 = -3/4 (-4) + 2 = 3 + 2 = 5
Another point is (2, 5)
Answer:
x = 5/42 or 0.119
Step-by-step explanation:
log(6x) + log(14) = 1
log(6x × 14) = 1
log(84x) =
84x = 10¹
84x = 10
x = 10/84
x = 5/42 or 0.119
Distribute 1st or subtract 90 and 3 first and then multiply by 15