Answer:
Mass of SO₂ can be made from 25.0 g of Na₂SO₃ and 22 g of HCl = 12.672 g
Explanation:
SO₂( sulfur dioxide) can be produced in the lab. by the reaction of hydrochloric acid & sulphite salt such as sodium.
the balanced chemical equation is as follows
Na₂SO₃ + 2 HCl → 2 NaCl + SO₂ + H₂O
Moles of Na₂SO₃ =
Moles of HCl =
using mole ratio method to find limiting reagent
For sodium sulfite
for HCl
since <u>sodium sulfite</u> is <u>limiting reactant</u> for above chemical reaction
1 mole of Na₂SO₃ produce 1 mole of SO₂
0.198 mole of Na₂SO₃ produce 0.198 mole of SO₂
∴ Mass of SO₂ produce = mole x molar mass of SO₂
= 0.198 x 64
= 12.672 g
It differs because it is a unicellular plant. Many scientists claim that Volvoxes are protists while many claim that they are plants, and protists are not plants.
Answer:
??i do know may i ask some questions?
Answer:
Acid base titration curves shows the pH at equivalence point
Explanation:
Since the images were not shown, I will proceed to give a general description of the following acid-base titration curves:
In a strong acid-strong base titration, the acid and base will react to form a neutral solution. At the equivalence point of the reaction, hydronium (H+) and hydroxide (OH-) ions will react to form water, leading to a pH of 7.
The titration curve reflects the strengths of the corresponding acid and base. If one reagent is a weak acid or base and the other is a strong acid or base, the titration curve is irregular, and the pH shifts less with small additions of titrant near the equivalence point.
Polyprotic acids are able to donate more than one proton per acid molecule, in contrast to monoprotic acids that only donate one proton per molecule. In the titration curve of a polyptotic acid and a strong base, The curve starts at a higher pH than a titration curve of a strong base. There is always a steep climb in pH before the first midpoint. Gradually, the pH increases until it passes the midpoint; Right before the equivalence point there is a very sharp increase in pH.