Shape
A gas is shapeless all other things being equal. It will, if put in a container, occupy every part of the container.
A liquid could also be thought of shapeless. If put in a container, it need not occupy the entire container. It will occupy as much as its calculated volume will permit it to occupy.
A solid will only occupy its original shape.
Volume
A gas will occupy whatever container it is put in within limits. You cannot put a 72 mols of gas in a mm^3 container without some amazing ability to apply a lot of pressure.
A liquid will occupy a volume determined by its density and mass. In general liquids cannot be compressed.
Whatever volume a solid has to start with, it will retain that volume all other things being equal.
This is actually very hard to describe.
<span>V equals one-third times pi times r squared times h</span>
Answer:
a chart
Explanation:
a chart a chart is the answer
Answer:

Explanation:
<h3><u>Given data:</u></h3>
Acceleration = a = 0.4 m/s²
Initial Speed =
= 20 m/s
Final Speed =
= 40 m/s
<h3><u>Required:</u></h3>
Time = t = ?
<h3><u>Formula:</u></h3>

<h3><u>Solution:</u></h3>
Rearranging formula for t
![\displaystyle t =\frac{V_f-V_i}{a} \\\\t = \frac{40-20}{0.4} \\\\t = \frac{20}{0.4} \\\\\boxed{t = 50 \ seconds}\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20t%20%3D%5Cfrac%7BV_f-V_i%7D%7Ba%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B40-20%7D%7B0.4%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B20%7D%7B0.4%7D%20%5C%5C%5C%5C%5Cboxed%7Bt%20%3D%2050%20%5C%20seconds%7D%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)