Reaction rates can be increased if the concentration of reactants is raised. An increase in concentration produces more collisions. The chances of an effective collision goes up with the increase in concentration. The exact relationship between reaction rate and concentration depends on the reaction "mechanism".
Answer:
Kc = 4.774 * 10¹³
Explanation:
the desired reaction is
2 NO₂(g) ⇋ N₂(g) + 2 O₂(g)
Kc =[N₂]*[O₂]² /[NO₂]²
Since
1/2 N₂(g) + 1/2 O₂(g) ⇋ NO(g)
Kc₁= [NO]/(√[N₂]√[O₂]) → Kc₁²= [NO]²/([N₂][O₂])
and
2 NO₂(g) ⇋ 2 NO(g) + O₂(g)
Kc₂= [NO]²*[O₂]/[NO₂]² → 1/Kc₂= [NO₂]²/([NO]²[O₂])
then
Kc₁²* (1/Kc₂) = [NO]²/([N₂]*[O₂]) *[NO₂]²/([NO]²[O₂]) = [NO₂]²/([N₂]*[O₂]²) = 1/Kc
Kc₁² /Kc₂ = 1/Kc
Kc= Kc₂/Kc₁² =1.1*10⁻⁵/(4.8*10⁻¹⁰)² = 4.774 * 10¹³
Answer:
8 of the electrons will be valence electrons
Explanation:
A.) Low frequency and Long Wavelength
Answer:
(a) 
(b) 
(c) 
(d) 
(e) 
Explanation:
To calculate de pH of an acid solution the formula is:
![pH = -Log ([H^{+}]) = 1](https://tex.z-dn.net/?f=pH%20%3D%20-Log%20%28%5BH%5E%7B%2B%7D%5D%29%20%3D%201)
were [H^{+}] is the concentration of protons of the solution. Therefore it is necessary to know the concentration of the protons for every solution in order to solve the problem.
(a) and (c) are strong acids so they dissociate completely in aqueous solution. Thus, the concentration of the acid is the same as the protons.
(b) and (e) are strong bases so they dissociate completely in aqueous solution too. Thus, the concentration of the base is the same as the oxydriles. But in this case it is necessary to consider the water autoionization to calculate the protons concentration:
![K_{w} =[H^{+} ][OH^{-}]=10^{-14}](https://tex.z-dn.net/?f=K_%7Bw%7D%20%3D%5BH%5E%7B%2B%7D%20%5D%5BOH%5E%7B-%7D%5D%3D10%5E%7B-14%7D)
clearing the ![[H^{+} ]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D)
![[H^{+} ]=\frac{10^{-14}}{[OH^{-}]}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B%5BOH%5E%7B-%7D%5D%7D)
(d) is a weak base so it is necessary to solve the equilibrium first, knowing 
The reaction is
→
so the equilibrium is

clearing the <em>x</em>

![x=[H^{+}]=4.93x10^{-10}](https://tex.z-dn.net/?f=x%3D%5BH%5E%7B%2B%7D%5D%3D4.93x10%5E%7B-10%7D)