1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxMikexx [17]
3 years ago
5

Find the area of the given figure.

Mathematics
2 answers:
marissa [1.9K]3 years ago
6 0

84.6 km2 is the answer

Lerok [7]3 years ago
3 0
The answer would definitely be be 84.6 km2, hopefully.
You might be interested in
I NEED IT EXTREMELY FAST!!!!
pochemuha

Answer:

x = 11 | Scale factor = 2

Step-by-step explanation:

As you can see, the 3 turns into a six meaning it multiplied by 2. Apply this to 5.5 to get 11. The 2 is your scale factor.

Hope this helps,

If you like my answer please give brainliest

Happy Holidays to everyone!

6 0
2 years ago
Read 2 more answers
I need the answers please help me help me help me<br>​
Katena32 [7]

Answer:

sorry i dont do parrallleleleleleleleograms

Step-by-step explanation:

8 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
−t=9(t−10) what is t
Luda [366]

Answer:

t = 9

Step-by-step explanation:

<em>-t = 9(t - 10)</em>

First, distribute the 9.

<em>-t = 9t - 90</em>

Next, add subtract 9t from both sides.

<em>(-t) - 9t = (9t - 90) - 9t</em>

<em>-10t = -90</em>

Divide both sides by -10.  When you divide a negative by another negative, they cancel each other out.

<em>(-10t)/-10 = (-90)/(-10)</em>

<em>t = 9</em>

7 0
3 years ago
Which expression is equivalent to (-4x^2)^3
Nina [5.8K]

Answer:

\red{ \rule{10pt}{99999pt}} \orange{ \rule{10pt}{99999pt}} \color{yellow}{ \rule{10pt} {99999pt}} \green{ \rule{10pt} {99999pt}} \blue{ \rule{10pt} {99999pt}} \purple{ \rule{10pt} {99999pt}}\red{ \rule{10pt}{99999pt}} \orange{ \rule{10pt}{99999pt}} \color{yellow}{ \rule{10pt} {99999pt}} \green{ \rule{10pt} {99999pt}} \blue{ \rule{10pt} {99999pt}} \purple{ \rule{10pt} {99999pt}}\red{ \rule{10pt}{99999pt}} \orange{ \rule{10pt}{99999pt}} \color{yellow}{ \rule{10pt} {99999pt}} \green{ \rule{10pt} {99999pt}} \blue{ \rule{10pt} {99999pt}} \purple{ \rule{10pt} {99999pt}}

8 0
2 years ago
Read 2 more answers
Other questions:
  • What is the value for y?<br><br><br><br> Enter your answer in the box.<br><br> y =
    10·1 answer
  • Please help me with this
    9·2 answers
  • The chart below shows the average number of movies seen per person in selected countries. Use equal intervals to make a frequenc
    14·1 answer
  • Which quadratic function best fits this data?
    7·1 answer
  • Juan has 18 fish that he needs to put into tanks. each tank can hold 3 fish. his father gave him 2 fish tanks, and his mother ga
    8·1 answer
  • How many ml are in an oz?
    11·1 answer
  • Urgent!!!) pls help me out how to solve question a? using the above data given for functions ..
    15·1 answer
  • Which of these can be classified as irrational numbers? explain.
    15·1 answer
  • What is -4/5 ÷ (-7/6) in simplest form ??
    13·1 answer
  • 2x=12+12<br><br>x????????????​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!