Answer:
Total energy =kinetic energy +potential energy.
Answer:
Walking burns up more energy,1740000J
Explanation:
Given that the displacement is 5.0km, and running at 10km/h and uses, walking at 3km/hr and uses 290watts:
Energy consumption for running is calculated as:

Energy consumption for walking is calculated as:

Walking is a slower process hence the need for more energy over longer periods raltive to running the same distance.
Hence walking burns more energy; 1,740,000J. It burns more because you walk for a greater period of time.
Answer:
a.) magnitude __49.7__ unit(s)
b.) direction __123.6°_ counterclockwise from the +x axis
Explanation:
Let Vector is v
x-component of Vector v = x = -27.5 units (minus sign indicate that x-component is along the minus x-axis )
y-component of Vector v = y = 41.4 units
Magnitude of v = ?
Direction of v = ?
To find the magnitude of the vector
v =
v = 
v = 49.7 units
To find direction
θ = tan⁻¹(y/x)
θ = tan⁻¹(41.4/-27.5)
θ = -56.4°
This Angle is in the clockwise direction with respect to -x axis.
We need to find Angle counterclockwise from the +x axis.
So,
θ = 180° - 56.4°
θ = 123.6°
The given vector is in 2nd quadrant
Answer:
The reflected resistance in the primary winding is 6250 Ω
Explanation:
Given;
number of turns in the primary winding,
= 50 turns
number of turns in the secondary winding,
= 10 turns
the secondary load resistance,
= 250 Ω
Determine the turns ratio;

Now, determine the reflected resistance in the primary winding;

Therefore, the reflected resistance in the primary winding is 6250 Ω
You need distance and time to find average speed.