1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hoochie [10]
3 years ago
11

Which property is represented in the example?

Mathematics
2 answers:
LUCKY_DIMON [66]3 years ago
7 0
Answer: <span>Distributive Property

hope that helps</span>
dybincka [34]3 years ago
5 0
This is the distributive property; you're taking the 10 and giving it, or distributing it, to the 4 and the 3. the best way to remember it on sight is just thinking about what "distributing" means.
You might be interested in
Write the following tepeating decmial 0.35 as a fraction
Mila [183]

Answer:

0.35 is equal to 7/20

4 0
3 years ago
Read 2 more answers
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 − 6x2 − 15x + 4 (a) Find the interval on which
kozerog [31]

Answer:

a) The function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Written in interval form

(-∞, -1.45) and (3.45, ∞)

- The function, f(x) is decreasing at the interval (-1.45 < x < 3.45)

(-1.45, 3.45)

b) Local minimum value of f(x) = -78.1, occurring at x = 3.45

Local maximum value of f(x) = 10.1, occurring at x = -1.45

c) Inflection point = (x, y) = (1, -16)

Interval where the function is concave up

= (x > 1), written in interval form, (1, ∞)

Interval where the function is concave down

= (x < 1), written in interval form, (-∞, 1)

Step-by-step explanation:

f(x) = x³ - 6x² - 15x + 4

a) Find the interval on which f is increasing.

A function is said to be increasing in any interval where f'(x) > 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

the function is increasing at the points where

f'(x) = 3x² - 6x - 15 > 0

x² - 2x - 5 > 0

(x - 3.45)(x + 1.45) > 0

we then do the inequality check to see which intervals where f'(x) is greater than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

So, the function (x - 3.45)(x + 1.45) is positive (+ve) at the intervals (x < -1.45) and (x > 3.45).

Hence, the function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Find the interval on which f is decreasing.

At the interval where f(x) is decreasing, f'(x) < 0

from above,

f'(x) = 3x² - 6x - 15

the function is decreasing at the points where

f'(x) = 3x² - 6x - 15 < 0

x² - 2x - 5 < 0

(x - 3.45)(x + 1.45) < 0

With the similar inequality check for where f'(x) is less than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

Hence, the function, f(x) is decreasing at the intervals (-1.45 < x < 3.45)

b) Find the local minimum and maximum values of f.

For the local maximum and minimum points,

f'(x) = 0

but f"(x) < 0 for a local maximum

And f"(x) > 0 for a local minimum

From (a) above

f'(x) = 3x² - 6x - 15

f'(x) = 3x² - 6x - 15 = 0

(x - 3.45)(x + 1.45) = 0

x = 3.45 or x = -1.45

To now investigate the points that corresponds to a minimum and a maximum point, we need f"(x)

f"(x) = 6x - 6

At x = -1.45,

f"(x) = (6×-1.45) - 6 = -14.7 < 0

Hence, x = -1.45 corresponds to a maximum point

At x = 3.45

f"(x) = (6×3.45) - 6 = 14.7 > 0

Hence, x = 3.45 corresponds to a minimum point.

So, at minimum point, x = 3.45

f(x) = x³ - 6x² - 15x + 4

f(3.45) = 3.45³ - 6(3.45²) - 15(3.45) + 4

= -78.101375 = -78.1

At maximum point, x = -1.45

f(x) = x³ - 6x² - 15x + 4

f(-1.45) = (-1.45)³ - 6(-1.45)² - 15(-1.45) + 4

= 10.086375 = 10.1

c) Find the inflection point.

The inflection point is the point where the curve changes from concave up to concave down and vice versa.

This occurs at the point f"(x) = 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

f"(x) = 6x - 6

At inflection point, f"(x) = 0

f"(x) = 6x - 6 = 0

6x = 6

x = 1

At this point where x = 1, f(x) will be

f(x) = x³ - 6x² - 15x + 4

f(1) = 1³ - 6(1²) - 15(1) + 4 = -16

Hence, the inflection point is at (x, y) = (1, -16)

- Find the interval on which f is concave up.

The curve is said to be concave up when on a given interval, the graph of the function always lies above its tangent lines on that interval. In other words, if you draw a tangent line at any given point, then the graph seems to curve upwards, away from the line.

At the interval where the curve is concave up, f"(x) > 0

f"(x) = 6x - 6 > 0

6x > 6

x > 1

- Find the interval on which f is concave down.

A curve/function is said to be concave down on an interval if, on that interval, the graph of the function always lies below its tangent lines on that interval. That is the graph seems to curve downwards, away from its tangent line at any given point.

At the interval where the curve is concave down, f"(x) < 0

f"(x) = 6x - 6 < 0

6x < 6

x < 1

Hope this Helps!!!

5 0
3 years ago
Change 52.7kobo to naira​
EastWind [94]

Answer:

442.590884 naira(NGN)

Step-by-step explanation:

1 kobocoin=8.413029 naira(NGN)

8 0
3 years ago
Find the mean, median, mode, and range of the data set.
kompoz [17]

Answer:

mean 11.14

Median 10

mode 10.

Explanation

Mean is sum of data divide by number of data.

Mode is the most appearing number.

3 0
3 years ago
P(x)=2x 4 −x 3 +2x 2 −6P, left parenthesis, x, right parenthesis, equals, 2, x, start superscript, 4, end superscript, minus, x,
Tresset [83]

Answer:

P = -x^3 +12 / x+6

Step-by-step explanation:

Let's solve for p.

px=(2)(4)−x3+(2)(2)−6p

Step 1: Add 6p to both sides.

px+6p=−x3−6p+12+6p

px+6p=−x3+12

Step 2: Factor out variable p.

p(x+6)=−x3+12

Step 3: Divide both sides by x+6.p(x+6)

x+6

=

−x3+12

x+6

p=

−x3+12

x+6

5 0
2 years ago
Other questions:
  • Availability is the most important consideration for designing servers, followed closely by scalability and throughput. a. [10]&
    12·1 answer
  • Help!!!!!!!!!!!!!!!!
    6·1 answer
  • the sun is about 93x10 to the power of 6 miles from earth what this distance written as a whole number?
    7·1 answer
  • In space, the intersection of a line and a plane is
    7·1 answer
  • Jennifer made 5 L of punch for her party. Her brother made another 750 mL. If they combine the 2 batches, how many 180 mL servin
    8·1 answer
  • in 2000 the world's population was 6.08 billion and was increasing at a rate 1.21 each year. use the function to predict the pop
    10·1 answer
  • Which of the following is the vertex of the equation \large x^2-2x=-5 ?
    9·1 answer
  • Write a multiplication statement and a division statement for each question
    7·1 answer
  • PLEASE LOOK AT PHOTO! WHOEVER ANSWERS CORRECTLY I WILL MARK BRAINIEST!!
    9·2 answers
  • Do the ratios 10:20 and 2:24 form a proportion?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!