Answer:
The solution is attached below:
Explanation:
Answer:
The plot of the function production rate m(t) (in kg/min) against time t (in min) is attached to this answer.
The production rate function M(t) is:
(1)
The Laplace transform of this function is:
(2)
Explanation:
The function of the production rate can be considered as constant functions by parts in the domain of time. To make it a continuous function, we can use the function Heaviside (as seen in equation (1)). To join all the constant functions, we consider at which time the step for each one of them appears and sum each function multiply by the function Heaviside.
For the Laplace transform we use the following rules:
(3)
(4)
Answer:
<em>a) 42 mm</em>
<em>b) 144.4 MPa</em>
<em></em>
Explanation:
Load P = 200 kN = 200 x 10^3 N
Torque T = 1.5 kN-m = 1.5 x 10^3 N-m
maximum shear stress τ = 100 Mpa = 100 x 10^6 Pa
diameter of shaft d = ?
From T = τ *
* 
substituting values, we have
1.5 x 10^3 = 100 x 10^6 x
x 
= 7.638 x 10^-5
d =
= 0.042 m = <em>42 mm</em>
b) Normal stress = P/A
where A is the area
A =
=
= 1.385 x 10^-3
Normal stress = (200 x 10^3)/(1.385 x 10^-3) = 144.4 x 10^6 Pa = <em>144.4 MPa</em>
Answer:
Explanation:
Given
scale i.e. 
Using Reynolds number similarity


Properties of air

Properties of sea water





Answer:
The lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.
Explanation:
The Upper Surface Cp is given as

The Lower Surface Cp is given as

The difference of the Cp over the airfoil is given as

Now the Lift Coefficient is given as

Now the coefficient of moment about the leading edge is given as

So the lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.