Answer:
A working with machinery be a common type of caught-in and caught-between hazard is described below in complete detail.
Explanation:
“Caught in-between” accidents kill mechanics in a variety of techniques. These incorporate cave-ins and other hazards of tunneling activity; body parts extracted into unconscious machinery; reaching within the swing range of cranes and other installation material; caught between machine & fixed objects.
Answer:
there's no photo? but I'm willing to help
Answer:
a) The additional time required for the truck to stop is <u>8.5 seconds</u>
b) The additional distance traveled by the truck is <u>230.05 ft</u>
Explanation:
Since the acceleration is constant, the average speed is:
(final speed - initial speed) / 2 = 0.75 v0
Since travelling at this speed for 8.5 seconds causes the vehicle to travel 690 ft, we can solve for v0:
0.75v0 * 8.5 = 690
v0 = 108.24 ft/s
The speed after 8.5 seconds is: 108.24 / 2 = 54.12 ft/s
We can now use the following equation to solve for acceleration:


a = -6.367 m/s^2
Additional time taken to decelerate: 54.12/6.367 = 8.5 seconds
Total distance traveled:

0 - 108.24^2 = 2 * (-6.367) * s
solving for s we get total distance traveled = 920.05 ft
Additional Distance Traveled: 920.05 - 690 = 230.05 ft
Answer:
b
Explanation:
the NEC has expanded the requirements for ground-fault circuit interrupters (GFCI) to protect anyone who plugs into an electrical system. Initially, it was only required for temporary wiring at construction sites and in dwelling unit bathrooms, but in recent years the Code requirements for GFCI protection have expanded to include many other areas, including commercial occupancies, fountains and swimming pools, and temporary installations, to name a few. (For a complete list of 2002 NEC references, see the sidebar below)