1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
10

A dielectric material, such as Teflon®, is placed between the plates of a parallel-plate capacitor without altering the structur

e of the capacitor. The charge on the capacitor is held fixed. How is the electric field between the plates of the capacitor affected? A dielectric material, such as Teflon®, is placed between the plates of a parallel-plate capacitor without altering the structure of the capacitor. The charge on the capacitor is held fixed. How is the electric field between the plates of the capacitor affected? The electric field becomes infinite because of the insertion of the Teflon®. The electric field becomes zero after the insertion of the Teflon®. The electric field decreases because of the insertion of the Teflon®. The electric field increases because of the insertion of the Teflon®. The electric field is not altered, because the structure remains unchanged. SubmitRequest Answer Provide Feedback Next
Engineering
1 answer:
Lina20 [59]3 years ago
8 0

Answer: The electric field decreases because of the insertion of the Teflon.

Explanation:

If the charge on the capacitor is held fixed, the electric field as a consequence of this charge distribution (directed from the positive charged plate to the negative charged one remains unchanged.

However, as the Teflon is a dielectric material, even though doesn't allow the free movement of the electrons as an answer to an applied electric field, it allows that the electrons be displaced from the equilibrium position, leaving a local negative-charged zone close to the posiitive plate of the capacitor, and an equal but opposite charged layer close to the negative plate.

In this way, a internal electric field is created, that opposes to the external one due to the capacitor, which overall effect is diminishing the total electric field, reducing the voltage between the plates, and  increasing the capacitance proportionally to the dielectric constant of the Teflon.  

You might be interested in
What is 39483048^349374*3948048/3i4u4
Verizon [17]

Answer:

1.  3.81813506×10^2^9

2.  1.71479428×10^6^5

3.  9.38483383×10^2^6

4.  1.150847×10^2^9

Explanation:

Feel free to give brainliest

Have a great day!

3 0
3 years ago
Which band has an average of $3.58 per hour of parking?
Minchanka [31]
C it would be c because that has more and the others have less
6 0
2 years ago
Technician A says that 5W-30 would be better to use than 20W-50 in most vehicles in
shtirl [24]
Technician is correct sorry if im wronghg
5 0
3 years ago
Read 2 more answers
A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of Syt = 60 kpsi and Syc = 75 kpsi. Using
kow [346]

Answer:

2.135

Explanation:

Lets make use of these variables

Ox 16.5 kpsi, and Oy --14,5 kpsi

To determine the factor of safety for the states of plane stress. We have to first understand the concept of Coulomb-Mohr theory.

Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress.

Please refer to attachment for the step by step solution.

4 0
3 years ago
A counter-flow double pipe heat exchanger is heat heat water from 20 degrees Celsius to 80 degrees Celsius at the rate of 1.2 kg
lakkis [162]

Answer:

L=107.6m

Explanation:

Cold water in: m_{c}=1.2kg/s, C_{c}=4.18kJ/kg\°C, T_{c,in}=20\°C, T_{c,out}=80\°C

Hot water in: m_{h}=2kg/s, C_{h}=4.18kJ/kg\°C, T_{h,in}=160\°C, T_{h,out}=?\°C

D=1.5cm=0.015m, U=649W/m^{2}K, LMTD=?\°C, A_{s}=?m^{2},L=?m

Step 1: Determine the rate of heat transfer in the heat exchanger

Q=m_{c}C_{c}(T_{c,out}-T_{c,in})

Q=1.2*4.18*(80-20)

Q=1.2*4.18*(80-20)

Q=300.96kW

Step 2: Determine outlet temperature of hot water

Q=m_{h}C_{h}(T_{h,in}-T_{h,out})

300.96=2*4.18*(160-T_{h,out})

T_{h,out}=124\°C

Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)

dT_{1}=T_{h,in}-T_{c,out}

dT_{1}=160-80

dT_{1}=80\°C

dT_{2}=T_{h,out}-T_{c,in}

dT_{2}=124-20

dT_{2}=104\°C

LMTD = \frac{dT_{2}-dT_{1}}{ln(\frac{dT_{2}}{dT_{1}})}

LMTD = \frac{104-80}{ln(\frac{104}{80})}

LMTD = \frac{24}{ln(1.3)}

LMTD = 91.48\°C

Step 4: Determine required surface area of heat exchanger

Q=UA_{s}LMTD

300.96*10^{3}=649*A_{s}*91.48

A_{s}=5.07m^{2}

Step 5: Determine length of heat exchanger

A_{s}=piDL

5.07=pi*0.015*L

L=107.57m

7 0
3 years ago
Other questions:
  • Are engineers needed in today’s society ? Why or why not ? I need a short three paragraph essay !!! Please help me !!!
    13·1 answer
  • A stream of ethylene gas at 250°C and 3800 kPa expands isentropically in a turbine to 120 kPa. Determine the temperature of the
    5·1 answer
  • A pressure gage at the inlet to a gas compressor indicates that the gage pressure is 40.0 kPa. Atmospheric pressure is 1.01 bar.
    5·1 answer
  • The two pond system is fed by a stream with flow rate 1.0 MGD (million gallons per day) and BOD (nonconservative pollutant) conc
    15·1 answer
  • Exhaust gases entering a convergent nozzle have a total pressure (Pt) of 200 kPa and total temperature (Tt) of 800 K. The gases
    5·2 answers
  • To do you blur text in google docs
    10·1 answer
  • Rosbel or Janette lol baakkaaa
    11·2 answers
  • What forced induction device is more efficient?
    8·2 answers
  • 30 points have a good day
    11·1 answer
  • Policeman says, "Son, you can't stay here"
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!