1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alchen [17]
2 years ago
9

How is this solved using trig identities (sum/difference)?

Mathematics
1 answer:
GenaCL600 [577]2 years ago
7 0
FIRST PART
We need to find sin α, cos α, and cos β, tan β
α and β is located on third quadrant, sin α, cos α, and sin β, cos β are negative

Determine ratio of ∠α
Use the help of right triangle figure to find the ratio
tan α = 5/12
side in front of the angle/ side adjacent to the angle = 5/12
Draw the figure, see image attached

Using pythagorean theorem, we find the length of the hypotenuse is 13
sin α = side in front of the angle / hypotenuse
sin α = -12/13

cos α = side adjacent to the angle / hypotenuse
cos α = -5/13

Determine ratio of ∠β
sin β = -1/2
sin β = sin 210° (third quadrant)
β = 210°

cos \beta = -\frac{1}{2}  \sqrt{3}

tan \beta= \frac{1}{3}  \sqrt{3}

SECOND PART
Solve the questions
Find sin (α + β)
sin (α + β) = sin α cos β + cos α sin β
sin( \alpha + \beta )=(- \frac{12}{13} )( -\frac{1}{2}  \sqrt{3})+( -\frac{5}{13} )( -\frac{1}{2} )
sin( \alpha + \beta )=(\frac{12}{26}\sqrt{3})+( \frac{5}{26} )
sin( \alpha + \beta )=(\frac{5+12\sqrt{3}}{26})

Find cos (α - β)
cos (α - β) = cos α cos β + sin α sin β
cos( \alpha + \beta )=(- \frac{5}{13} )( -\frac{1}{2} \sqrt{3})+( -\frac{12}{13} )( -\frac{1}{2} )
cos( \alpha + \beta )=(\frac{5}{26} \sqrt{3})+( \frac{12}{26} )
cos( \alpha + \beta )=(\frac{5\sqrt{3}+12}{26} )

Find tan (α - β)
tan( \alpha - \beta )= \frac{ tan \alpha-tan \beta }{1+tan \alpha  tan \beta }
tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3}   }{1+(\frac{5}{12}) ( \frac{1}{2} \sqrt{3})}

Simplify the denominator
tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3}   }{1+(\frac{5\sqrt{3}}{24})}
tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3} }{ \frac{24+5\sqrt{3}}{24} }

Simplify the numerator
tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{6}{12} \sqrt{3} }{ \frac{24+5\sqrt{3}}{24} }
tan( \alpha - \beta )= \frac{ \frac{5-6\sqrt{3}}{12} }{ \frac{24+5\sqrt{3}}{24} }

Simplify the fraction
tan( \alpha - \beta )= (\frac{5-6\sqrt{3}}{12} })({ \frac{24}{24+5\sqrt{3}})
tan( \alpha - \beta )= \frac{10-12\sqrt{3} }{ 24+5\sqrt{3}}

You might be interested in
Please help me solve this question
brilliants [131]
Bestie the answer: is C
5 0
2 years ago
Which one is greater 7.216 or 7203
OLEGan [10]
7203 is greater because it font got no decimal or nothing. Is a whole number
6 0
3 years ago
A car rental company charges a daily fee of $12.95 on all rental cars.
Rina8888 [55]

Answer:

C

Step-by-step explanation:

Sorry if I’m wrong but I think I’m right

4 0
3 years ago
Read 2 more answers
Gib Answer:
Marina86 [1]

Answer:

the probability is 1/4

4 0
2 years ago
More points cause im bored<br> A have a nice day<br> B doing this so i dont get reported
kobusy [5.1K]

ok

i dunno what to say

7 0
3 years ago
Read 2 more answers
Other questions:
  • Why does insurance often provide "peace of mind"?
    8·2 answers
  • The town of Maxwell increased its annual budget from $1,300,000 to 1,800,000. Find the percent increase in the budget
    13·1 answer
  • A length of ribbon measures 3 yd 1 ft 10 in.
    10·1 answer
  • Kamal bought 77 packs of paper clips for a project. then he bought 88 more packs. there are 2525 paper clips in each pack. how m
    8·1 answer
  • The slope of the line whose equation is x = 6 is no slope 0 6
    5·2 answers
  • What are the zeros of the function f(x)=x2+12x+38
    8·1 answer
  • Need help so baddddd
    9·2 answers
  • Select the correct answer. Function f is an exponential function that has an initial value of 64 and decreases by 50% as x incre
    5·2 answers
  • I am really bad at math
    13·1 answer
  • Find an expression for the area enclosed by quadrilateral ABCD below.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!