Answer:
38 elements or Element 31: Gallium Element 32: Germanium Element 33: Arsenic Element 34: Selenium Element 35: Bromine Element .
Explanation:
How many transition metals are there?
The 38 elements in groups 3 through 12 of the periodic table are called "transition metals". As with all metals, the transition elements are both ductile and malleable, and conduct electricity and heat.
Answer : The Lewis-dot structure and resonating structure of
is shown below.
Explanation :
Resonance structure : Resonance structure is an alternating method or way of drawing a Lewis-dot structure for a compound.
Resonance structure is defined as any of two or more possible structures of the compound. These structures have the identical geometry but have different arrangements of the paired electrons. Thus, we can say that the resonating structure are just the way of representing the same molecule.
First we have to determine the Lewis-dot structure of
.
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that sulfur and oxygen has '6' valence electrons.
Therefore, the total number of valence electrons in
= 6 + 4(6) + 2 = 32
According to Lewis-dot structure, there are 12 number of bonding electrons and 20 number of non-bonding electrons.
Hence, the Lewis-dot structure and resonating structure of
is shown below.
Answer:
Br- Withdraws electrons inductively
Donates electrons by resonance
CH2CH3 - Donates electrons by hyperconjugation
NHCH3- Withdraws electrons inductively
Donates electrons by resonance
OCH3 - Withdraws electrons inductively
Donates electrons by resonance
+N(CH3)3 - Withdraws electrons inductively
Explanation:
A chemical moiety may withdraw or donate electrons by resonance or inductive effect.
Halogens are electronegative elements hence they withdraw electrons by inductive effect. However, they also contain lone pairs so the can donate electrons by resonance.
Alkyl groups donate electrons by hyperconjugation involving hydrogen atoms.
-NHCH3 and contain species that have lone pair of electrons which can be donated by resonance. Also, the nitrogen and oxygen atoms are very electron withdrawing making the carbon atom to have a -I inductive effect.
+N(CH3)3 have no lone pair and is strongly electron withdrawing by inductive effects.