1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
14

A) Show that the surface temperature of a star can be inferred from measurements of blackbodyfluxes at two different frequencies

, even if the stellar radius and distance are unknown.
b) Explain why in practice this method does not work well if both frequencies are on theRayleigh-Jeans side of the spectrum,hνkT.
c) Derive a simple, approximate expression for the temperature when both measurements areon the Wien tail,hνkT.
d) Derive an expression for the star’s radius if a distance measurement is also available (e.g.,from parallax).

Physics
1 answer:
Roman55 [17]3 years ago
3 0

Answer:

The answers to the questions have been solved in the attachment.

Explanation:

The answers to part a to e are all contained in the attachment. For answer part b, temperature and frequency were assumed to be fixed or constant. V² is directly proportional to T telling us that variation in T gives us a square in the frequency variation. This tells us why it is difficult when both frequencies are on this side of the black body.

You might be interested in
Never mind i dont need help anymore
Usimov [2.4K]
Yay good for you!!!!
8 0
3 years ago
A child pushes a toy car down a hill. The child has a mass of 20 kg. The car has a mass of 1.6 kg and a speed of 7.4 m/s2. When
Andrew [12]

Answer:

The answer is 73.8 J

Explanation:

5 0
3 years ago
7th grade science!! Help ASAP!!
N76 [4]

Answer:

Bladder: A temporary storage place for urine

Ureter: Tube that carries urine from the kidneys from the bladder

Nephron: functional unit of the kidney.

Urethra: Exit way for urine out of the body.

Kidney: filters waste from the blood.

I hope this helps! Have an amazing day!

7 0
3 years ago
Read 2 more answers
A cart traveling at 0.3 m/s collides with stationary object. After the collision, the cart rebounds in the opposite direction. T
miv72 [106K]

Answer:

C.   In the first collision has twice the momentum as when it stays still ( second colllions)

Explanation:

To see which statement is correct, it is best to solve the problem, the momentum is equal to the variation of the moment

     I = Δp = m vf - m v₀

     I = m (vf -v₀)

Case 1. In car bounces, the initial speed is 0.3 m / s, say that this direction is positive, when the magnitude of the speed bounces it remains constant, but its direction is reversed (vf = -0.3 m / s)

    I₁ = m (-0.3 - 0.3)

    I₁ = -0.6 m

Case 2. The expensive one that still after the crash so its speed is zero (vf = 0)

    I₂ = m (0 - 0.3)

    I₂ = -0.3 m

Let's calculate the relationship between the two impulses

     I₁ / I₂ = -0.6m / -0.3m

     I₂ / I₂ = 2

When it bounces it has twice the momentum as when it stays still

Now let's analyze the answers:

A.   False The momentum changes

B. False. The momentum is less in the second collision

C. True.  The momentum is double in this collision

D. False. Can be calculated, because the mass is the same throughout the exercise and is eliminated in the equations

E. False.  When they say bounces it implies the same speed with the opposite direction

4 0
3 years ago
An object with mass 100 kg moved in outer space. When it was at location <8, -30, -4> its speed was 5.5 m/s. A single cons
Alenkasestr [34]

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

5 0
3 years ago
Other questions:
  • Chlorophylls absorb most light in which colors of the visible range?
    9·1 answer
  • Which of the following is a nontimber forest product
    10·1 answer
  • The chemical formula for glucose is C6H12O6. Therefore, four molecules of glucose will have carbon atoms, hydrogen atoms, and ox
    15·2 answers
  • What charges form a neutral charge?
    14·2 answers
  • A 20.0 μF capacitor initially charged to 30.0 μC is discharged through a 1.20 kΩ resistor. How long does it take to reduce the c
    13·1 answer
  • A parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates. A 1.0 g plastic bead, with a charg
    13·1 answer
  • A 40.0 kg wheel, essentially a thin hoop with radius 0.810 m, is rotating at 438 rev/min. It must be brought to a stop in 21.0 s
    9·2 answers
  • A backyard swimming pool holds 150 cubic yards (yd3) of water. what is the weight of the water in pounds?
    12·1 answer
  • A runner runs 2.0 km in 5.0 minutes
    10·2 answers
  • The break light on a car is connected to a 12V battery. If the resulting current is 0.4A what is the resistance of the brake lig
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!