Answer:
a

b
The value is 
Explanation:
From the question we are told that
The mass is
The spring constant is 
The instantaneous speed is 
The position consider is x = 0.750A meters from equilibrium point
Generally from the law of energy conservation we have that
The kinetic energy induced by the hammer = The energy stored in the spring
So

Here a is the amplitude of the subsequent oscillations
=> 
=> 
=> 
Generally from the law of energy conservation we have that
The kinetic energy by the hammer = The energy stored in the spring at the point considered + The kinetic energy at the considered point

=> 
=> 
From the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
<h3>What is the frequency of a wave?</h3>
The frequency of a wave is the number of complete oscillation per second completed by a wave.
Frequency is related to wavelength and speed by the following formula:
- Frequency = velocity/wavelength
Velocity of sound in air = 330 m/s
The measured wavelength = 5.0 cm = 0.05 m
Frequency = 330/0.05 = 6660 Hz
Therefore, based on the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
Learn more about frequency of sound at: https://brainly.in/question/15373132
#SPJ1
Superheated water is liquid water under pressure at temperatures between the usual boiling point, 100c (212 F ) and the critical temperature , 374 C (705F) . It is also known as “subcritical water”
Or “pressurized hot water”.
Let t=time to reach the ground=8 secs, g= acceleration of gravity. The speed v on reaching the ground is gt=8g=78.4 m/s where g=9.8 m/s/s approx.
Answer:
14.36 N
Explanation:
= Tension in string 1
= Tension in string 2
= mass of the bar = 2.7 kg
= weight of the bar
weight of the bar is given as
N
= mass of the bar = 1.35 kg
= weight of the monkey
weight of the monkey is given as
N
Using equilibrium of torque about left end
N
Using equilibrium of force in vertical direction
N