With that information you can only suppose a uniformly accelerated motion. This is, acceleration is constant.
Then, acceleration = change in velocity / change in time = (58 -54)km/h / 2 h = 4km/h / 2 h = 2 km/h^2
Then the equation for velocity, V is
V = Vo + a*t = Vo + 2 (km/h^2) * t = Vo + 2t
Vo is the initial velocity, which you can find using V = 54km/h and t = -2
Vo = V after 2 hours - a*(2hours) = 54km/h - 2(km/h^2)*2h = 54km/k - 4km/h = 50km/h
Then, the equation is: V = 50 km/h + 2t
Valid for constant acceleration.
Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.
Answer:
Im not sure who you are talking about, but if you are talking about Dominic Raab, well, he failed to make a crucial phone call to seek urgent help airlifting translators out of Afghanistan. if you are not talking about this Dominic, then please add more information to your question.
No because your opinion and beliefs answers many questions
Kinematics : Study of motion
Fluid kinematics : study of how fluid flows and how to describe its motion.
There are two ways to describe fluid motion
one is Eulerian, where the variations are described at all fixed stations as a function of time.
the other is Lagrangian, in which one follows all fluid particles and describes the variations around each fluid particle along its trajectory.
<u>DIFFRENCE BETWEEN LAGRANGIAN AND EULERIAN:</u>
1.Both Lagrangian and Eulerian describes time variation.
2. Eulerian describes the rate of change in one point of space
Lagrangian descries rate of change of a property of material system.
To know more about the Lagrangian and Eulerian :\brainly.com/question/14944792
#SPJ4