Because the hamburger is still hot from the grill, the cheese melts because of that heat.
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N
In the writing of ionic chemical formulas the value of each ion's charge is crossed over in the crossover rule.
Rules for naming Ionic compounds
- Frist Rule
The cation (element with a negative charge) is written first in the name then the anion(element with a positive charge) is written second in the name.
- Second rule
When the formula unit contains two or more of the same polyatomic ion, that ion is written in parentheses with the subscript written outside the parentheses.
Example: Sodium carbonate is written as Na₂CO₃ not Na₂(CO)₃
- Third rule
If the cation is a metal ion with a fixed charge then the name of the cation will remain the same as the (neutral) element from which it is derived (Example: Na+ will be sodium).
If the cation is a metal ion with a variable charge, the charge on the cation is indicated using a Roman numeral, in parentheses, immediately following the name of the cation (example: Fe³⁺ = iron(III)).
- Fourth rule
If the anion is a monatomic ion, the anion is named by adding the suffix <em>-ide</em> to the root of the element name (example: F = Fluoride).
The oxidation state of each ion is also important, thus in the crossover rule, the value of each ion's charge is crossed over.
Learn more about chemical formulas here:
<u>brainly.com/question/11995171</u>
#SPJ4
Answer:
(a) 2.85 m
(b) 16.5 m
(c) 21.7 m
(d) 22.7 m
Explanation:
Given:
v₀ₓ = 19 cos 71° m/s
v₀ᵧ = 19 sin 71° m/s
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
(a) Find Δy when t = 3.5 s.
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (19 sin 71° m/s) (3.5 s) + ½ (-9.8 m/s²) (3.5 s)²
Δy = 2.85 m
(b) Find Δy when vᵧ = 0 m/s.
vᵧ² = v₀ᵧ² + 2 aᵧ Δy
(0 m/s)² = (19 sin 71° m/s)² + 2 (-9.8 m/s²) Δy
Δy = 16.5 m
(c) Find Δx when t = 3.5 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.5 s) + ½ (0 m/s²) (3.5 s)²
Δx = 21.7 m
(d) Find Δx when Δy = 0 m.
First, find t when Δy = 0 m.
Δy = v₀ᵧ t + ½ aᵧ t²
(0 m) = (19 sin 71° m/s) t + ½ (-9.8 m/s²) t²
0 = t (18.0 − 4.9 t)
t = 3.67
Next, find Δx when t = 3.67 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.67 s) + ½ (0 m/s²) (3.67 s)²
Δx = 22.7 m
Lightning is a naturally occurring electrostatic discharge during which two electrically charged regions in the atmosphere or ground temporarily equalize themselves, causing the instantaneous release of as much as one gigajoule of energy.